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Abstract

LLMs trained with RLHF exhibit a bias toward longer responses, leading to repeti-
tion and answers that are tedious to parse. The goal of this project is to improve
the conciseness of LLMs trained with RLHF for question answering. Inspired by
information theory concepts, I examine whether modifying rewards based on token
entropy, token similarity, and length of responses during RLHF increases informa-
tion density of downstream generated responses. Though some my interventions
are able to decrease length and repetitiveness and improve information density,
these come at the cost of potentially worse response quality compared to ground
truth human responses.
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2 Introduction

My goal was to increase the information density of an LLM’s responses for question answering. I
became interested in this problem because I’ve noticed most text I read can be shortened substantially
by changing phrases or sentence structure with almost no loss of information. Large language models,
particularly those trained with RLHF, are biased even further towards longer outputs, likely due to
humans ranking these outputs as more favorable (Shen et al., 2023). For example, I asked ChatGPT
“How long past the expiration can toothpaste last?” and it gave a long 3 paragraph response, which I
got it to shorten to the following:

Toothpaste can often be used a few months beyond its expiration date, but it’s best to replace it
if you notice changes in color, texture, or smell. Factors like storage conditions can affect its
stability. While using toothpaste past the expiration date might not be harmful, it’s crucial to
prioritize oral hygiene and replace it if there are any doubts. If in doubt, consult with a dentist.

I came up with the much shorter summary below, which contains the key information:

You can often use toothpaste a few months past its expiration, but toss it if you see changes.
Storage conditions impact stability. Prioritize hygiene and ask a dentist if unsure.

Prior approaches include length penalties during RLHF (Singhal et al., 2023), altered token selection
during decoding (Xu et al., 2023), or training a product of experts model to isolate simple biases
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(Shen et al., 2023), but these approaches are either unsuccessful or don’t truly optimize my desired
objective. There are ways of quantifying information density and repetitiveness, such as entropy
and KL divergence, and my approach in this project was to apply information theoretic concepts
during RLHF in an attempt to increase information density of responses. I found these approaches to
some benefits in decreased length and increased information density, but likely at the cost of response
quality.

3 Related Work

Prior approaches relevant to my goal explore other ways of changing reward during RLHF, training
a Product of Experts model during RLHF to isolate simple biases, or altering the way tokens are
chosen during decoding.
Standard RLHF fine-tuning begins with a supervised fine-tuned (SFT) model πSFT , trains a reward
model Rθ on context response pairs (x, y), and optimizes πϕ on the rewards Rθ(x, y) via the
PPO(Schulman et al., 2017) objective. In the direction of altering rewards during RLHF, Singhal
et al. (2023) explore adding a length penalty on the responses y to the rewards or omitting tokens
after a length threshold from PPO training. Though these interventions decreased length compared to
standard RLHF, they found both interventions still had longer response lengths than the base SFT
model and achieved lower reward (Singhal et al., 2023). I also find this reward objective a bit shallow
compared to information density, as a short piece of text can still be uninformative and optimizing
information density instead could lower length naturally.
Shen et al. (2023) take an alternative approach by training a Product of Experts with a small model
and a larger model during the reward modeling stage, calling the small model a bias LLM. They
argue that the simpler bias LLM learns simple and undesirable features of responses such as length
and therefore remove the bias LLM during RLHFShen et al. (2023). While Shen et al. (2023) do
show some reduction in length and improvements in other metrics, I find their approach somewhat
unsatisfying as it is unclear what objective it optimizes and removing the bias LLM could also remove
desirable features of responses.
Finally, Xu et al. (2023) examine improving informativeness in open-ended neural text generation,
where a language model is given a context {x1, . . . , xm} and must output an n token continuation.
Xu et al. (2023) identify the competing objectives of avoiding repetition and avoiding incoherence,
where a model can drift off topic when repetition is penalized heavily. They propose look-back
decoding, a method of token selection that avoids low KL divergences between generated tokens
while bounding KL divergence from the reference prompt, which they find avoids repetition while
preserving coherenceXu et al. (2023). I found the idea of looking at token distributions rather than
tokens themselves quite clever. However, I also feel the objective of avoiding repetition is slightly
undesirable compared to information density, as text can avoid being repetitive while still being
verbose or uninformative. The fact that the algorithm is applied at decoding time has the advantage
of avoiding retraining, which is a huge benefit, but also means that the LLM is not truly optimized for
the desired objective, which could lead to sub-optimal outputs and slowdowns at test time.

4 Approach

RLHF fine-tuning begins with a supervised fine-tuned (SFT) model πSFT , trains a reward model Rθ

on preferences y1 ≻ y2 between pairs of responses (y1, y2) for a given context x, and optimizes πϕ

via the PPO objective

Ex∼D[Ey∼πϕ(x)[Rθ(x, y)− λ log(πϕ(y|x)/πSFT (y|x)]]

where the KL-divergence penalty avoids over-fitting on rewards by constraining the policy to be close
to the supervised model.
My approaches fall into the category of altering rewards during RLHF, since RLHF is a standard
way of training a language model to obey certain preferences. Building off of Singhal et al. (2023)’s
repository for examining length biases in RLHF, I examined adding the following rewards to the
reward model during PPO training.
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4.1 Token Entropy Bonus

During PPO fine-tuning I was able to get the log probabilities of each generated token
log p(y1), . . . , log p(yn) from the language model. Then for each response I calculated the entropy

H(y) =
∑
i

p(yi) log p(yi)

Intuitively, this objective makes token probabilities slightly more uniform which can increase the
uncertainty, and therefore the information density, of responses. However, it does have the drawback
of potentially generating sub-optimal responses with respect to the original rewards or injecting
undesired randomness into responses.

4.2 Token Pairwise KL Divergence Bonus

(Xu et al., 2023) used KL divergences of generated tokens to great effect in Lookback Decoding,
finding that KL divergences between token distributions reflected token similarity quite well as shown
in the KL heat map from their paper in Figure 1.

Figure 1: KL divergence heat map between two sentences from Xu et al. (2023)

In the heat map, similar words have lower KL divergences, which suggests that comparing through
KL divergences provides a more powerful information theoretic notion of similarity than simply
checking if tokens are exactly the same. This gave me the idea to use KL divergences during RLHF
instead of decoding to train the model to avoid repetitions at this stage. Therefore, I added the
following bonus to incentivize higher KL divergences between generated response tokens:∑

i,j

KL(p(yi), p(yj))

Xu et al. (2023) used this objective over a fixed backward window when choosing tokens during
decoding and additionally required some coherence to the context. In contrast, implementing this
during RLHF avoids the concern of over optimizing and results in a model that is truly optimized
with the desired objective of avoiding repetition.

4.3 English Length Penalty

Finally, I noticed that Singhal et al. (2023) used a penalty on token lengths of responses, but the
lengths of responses in English can be quite different, and this matter significantly for humans. In
particular, lower entropy English words such as “the” are naturally shorter, while such words can
have the same length in token space. This gave me the idea to put a penalty on English length instead
of using token length as in Singhal et al. (2023). Conretely, as in Singhal et al. (2023), I use the
penalty

σ(1− len(y)
N

)

where N is a maximum length we do not want to exceed but len(y) is now English length instead of
token length.
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4.4 Models

I primarily used the Llama-7B (Touvron et al., 2023) and Pythia-1B (Biderman et al., 2023) models
from Hugging Face in my experiments for both training reward models and language generation
during PPO. However, I found PPO training using the Pythia-1B reward model to be unstable. I also
attempted to use Google’s Gemma model but ran into some errors which I couldn’t resolve easily.

4.5 Baselines

For my baselines, I compare with both supervised fine-tuned (SFT) models from before RLHF
and models trained with standard RLHF. For SFT models, I used the Llama-7B checkpoint from
AlpacaFarm (Dubois et al., 2024) and the Pythia-1B model (Biderman et al., 2023) from Hugging
Face. For RLHF, I used Singhal et al. (2023)’s repository to train a reward model from each of these
SFT models and then fine-tuned with the standard rewards and no additions.

5 Experiments

5.1 Data

As in Singhal et al. (2023), I use the WebGPT dataset(Nakano et al., 2022), where each example
features a question, context the WebGPT model found while browsing for the question, and two
answers, each with a score in [−1, 1] denoting the strength of the preference for that answer over
the other answer. This preference data is used during RLHF to train the reward model, before
then running PPO on the reward model so that downstream language generation reflects the desired
preferences.

5.2 Evaluation method

I use the same metrics used in Lookback Decoding (Xu et al., 2023). First, I use the repetition and
diversity metrics from Su et al. (2022) to get some measure of the repetitiveness and information
density of my generated responses. For a generated piece of text, Su et al. (2022) define the n-gram
level repetition, a score in [0, 100], as

rep-n(x̂) = 100

(
1− |unique n-grams(x̂)

total n-grams(x̂)

)
This measures the proportion of duplicated n-grams in a piece of text. Su et al. (2022) then define

diversity(x̂) =
4∏

n=2

(
1− rep-n(x̂)

100

)

To evaluate the quality of responses, I use the MAUVE metric, which clusters generated and golden
human outputs in an embedding space and compares them using KL divergences (Pillutla et al., 2021).
MAUVE scores are in [0, 1] with higher MAUVEs being closer to human ground truth text. After
completion of RLHF, I selected 1000 examples from the WebGPT dataset and ran MAUVE on these
to compare my generated model outputs to the ground truth human text.

5.3 Experimental details

I took around a day to train the reward model for Llama-7B and half a day to train a reward model for
Pythia-1B. Then I ran PPO fine-tuning for 500 epochs with Pythia, which took 8 hours per run, and
250 epochs for Llama, which took about 8 hours per run. I used learning rates of 1e-5.
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5.4 Results

Mauve Repetition-3 Diversity Length
RLHF + Entropy 0.175 0.155 0.990 199

RLHF + Pairwise KL 0.376 0.561 0.969 385
RLHF + Len Penalty 0.117 0.100 0.994 145

RLHF 0.287 0.239 0.983 380
SFT 0.337 0.174 0.984 441

Table 1: Llama-7B Results

Evaluation metrics with the Llama-7B model are shown in 1. We can see that MAUVE and repetition
appear to compete with each other, which makes sense. The entropy bonus and length penalty reduce
repetition by 35% and 58% respectively compared to standard RLHF, potentially helped by their
shorter length. However, they also significantly decrease MAUVE with human ground truth text
compared to standard RLHF. The authors of MAUVE mention that MAUVE may not necessarily
indicate the true quality of output text since it only compares to the distribution of human text but this
metric still suggests that the quality of our output may be worse. It is interesting to note that as we
were hoping, incentivizing, entropy does seem to naturally shorten length, leading to more concise
responses and high diversity.
The results of the pairwise KL divergence bonus are surprising. Repetition scores are out of 100,
meaning that the increase in repetition may not be substantial, but I was expecting incentivizing high
KL divergences between tokens to have the opposite effect of lowering repetition. Further surprising
me is the fairly substantial improvement in MAUVE compared to SFT and RLHF, which I have not
been able to explain.

Figure 2: MAUVE vs. Repetition and Length

To dig deeper into the relationship between repetition and MAUVE, we plot repetition vs. MAUVE
in Figure 2. Unfortunately if we trust the MAUVE metric, these Pareto frontiers suggests that our
interventions may be harmful with respect to quality but examples in our analysis section suggest
that all answers are reasonably well-formed. Time sensitive readers may prefer the substantially
shorter responses from our interventions over those from standard SFT and RLHF. It would also be
interesting to see if there is a way to smoothly trade of these factors, perhaps through reweighting
rewards.
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Mauve Repetition-3 Diversity Length
RLHF + Entropy 0.013 1.367 0.779 1243

RLHF + Pairwise KL 0.013 1.037 0.792 1254
RLHF + English Penalty 0.011 0.596 0.859 1269

RLHF + Len Penalty 0.019 5.170 0.771 755
RLHF 0.016 2.339 0.783 1248
SFT 0.019 2.921 0.521 1160

Table 2: Pythia-1B Results

I found RLHF with Pythia-1B to be unstable, with responses becoming gibberish repeating char-
acters at 100 epochs, which I demonstrate may be due to reward modeling in the analysis section.
Nevertheless, my results with the Pythia-1B model with 50 epochs of PPO training are shown in 2.
The MAUVE metrics and repetition metrics are substantially poorer for Pythia-1B than for Llama-
7B. However, looking at the relative results, we do see a substantially lower repetition and higher
diversity with each of our 3 interventions, particularly with the penalty on length in English. The
MAUVE metrics are slightly lower than RLHF but still in the same ballpark, so perhaps the increased
information density of our answers makes the tradeoff worthwhile here.

6 Analysis

Figure 3: Rewards of Llama-7B and Pythia-1B reward models during standard RLHF

For one clue as to why Pythia-1B performance is poor compared to Llama-7B, I compared the reward
between Llama-7B and Pythia-1B for during standard RLHF in Figure 3. We can see that while
the rewards from the Llama-7B reward model stay roughly constant during RLHF, the Pythia-1B
reward model shows substantial increases in reward quite early in training, right around 50 iterations
where I observed the response quality degrading. Perhaps the Pythia-1B reward model can simply
be exploited too easily, and we must use larger models for truly robust RLHF. Alternative methods
without a reward model such as Direct Preference Optimization may be able to sidestep this issue
(Rafailov et al., 2023).
Qualitatively, I found response length and tone very different among the methods. One example of a
question with corresponding outputs is shown below.
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Question We have a circulatory system, nervous system, and a great deal of
organs, but what is responsible for actually generating heat? Our
blood is warm, but what is heating it?

RLHF Our body produces heat through metabolism - the process by which we
convert food into energy to use in our cells. This energy produced during
metabolism can be measured as heat, and so this is why our body’s
temperature increases when its using energy!

SFT Our body produces heat by metabolism - the process in which your cells
use energy to carry out the tasks needed to survive. During this process,
molecules collide with each other, creating friction which produces heat.
The greater the number of collisions between molecules, the higher the
temperature will be.

Entropy Bonus Our body produces heat through metabolism - the process by which cells
use energy to carry out biochemical processes in the body.

KL Bonus Our body produces heat through cellular respiration which involves
the breakdown of glucose in the cells to use as energy. This process
generates ATP (Adenosine Triphosphate), which is used by the body’s
tissues to carry out the needed functions. During this reaction, some
heat is produced and released into the surrounding environment, helping
maintain the body’s temperature at a normal level.

Length Penalty Our body produces heat through metabolism.

Upon looking at these responses, all of them seem to be well formed so perhaps the degradation of
the MAUVE metric is not of too great concern. Among the baselines we can see that RLHF has
repeats “energy” several times (“into energy”, “this energy”, “using energy”) and gives a detailed
somewhat enthusiastic response, while the SFT model gives a good if slightly long answer with a bit
of repetition. Compared to these two answers, the model trained with a bonus on KL divergences
gives a very informative answer which I like a lot, describing the actual scientific processes that are
occurring without too much repetition. Among the shorter answers, the model with entropy bonus
gives a concise answer containing the main points while the model with the length penalty gives an
answer that is probably too short and would demand some follow-up questions.

7 Conclusion

Through this project, I found that modifying rewards during RLHF training with information theoretic
measures and length penalties can lead to a variety of different response modalities, which may
appeal to different types of users. I discovered the benfeits of drawbacks of using certain strategies,
such as entropy, kl divergence of tokens, and length penalties, as well of some of the challenges of
the RLHF workflow. However, I think a more powerful approach could allow us to span the full
Pareto frontier of tradeoffs between length and response quality. I can imagine a user-interface for
a LLM where a user might drag certain sliders for response length or repetitiveness and the LLM
could respond to these. RLHF is also inflexible in having to have a separate reward model for each
of these choices - perhaps there is a way to train a reward model conditioned on length or other
user preferences. Finally, I feel a better approach might be to modify direct preference optimization
instead of using RLHF with a reward model and PPO, which would could avoid instability of training
from reward models.
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