
Outrageously Fast LLMs: Faster Inference and
Fine-Tuning with Moefication and LoRA

Stanford CS224N Custom Project
Mentor: Tony Wang

Chi Tsai∗
Department of Computer Science

Stanford University
chiyotsai@stanford.edu

Jay Martin†

Department of Computer Science
Stanford University

jaydm@stanford.edu

Abstract

In recent years, transformer large language models (LLMs) have achieved wide
success in a variety of downstream tasks, in large part by dramatically scaling up
parameter counts. This, however, greatly increases the computational burden of
training and running models. In this project, we propose a method that balances
performance, inference complexity, and training complexity through a two-stage
process. First, we reduce the inference complexity by converting the feed-forward
networks in a pretrained LLM into a Mixture of Experts (MoE) through a process
called MoEfication. This leads to reductions in performance on downstream tasks,
however, so we utilize Low-Rank Adapatation (LoRA) matrices to efficiently fine-
tune the MoEified model. Our results demonstrate that we can recover nearly all
of the performance loss, resulting in a pipeline for reducing inference time with
minimal loss in model quality.

1 Introduction

The remarkable recent successes of language models come in no small part from exploiting scale in
both training data and model size (Han et al., 2021). Model performance on downstream tasks is highly
correlated with the number of model parameters and size of the dataset used for training (Kaplan
et al., 2020; Aghajanyan et al., 2023), and as a result the principal driver of recent accomplishments
in language modeling has been the continuous release of ever-larger models, and the path forward
seen by a number of noted researchers is not merely large models but outrageously large models
(Shazeer et al., 2017).

This trend, however, greatly increases the computational resources needed to train and run language
models.

Consequently, a great deal of effort has gone into making transformer models more efficient, utilizing
techniques like model pruning and attention approximation (Tay et al., 2022; Pope et al., 2023). In
particular, one approach that has seen a recent resurgence since it was first proposed in the 1990s
is Mixture of Experts (MoE) (Jacobs et al., 1991), in which a model consists of distinct “experts”,
only a subset of which are activated on a given input. This enables training very large models—and
benefiting from the enhanced performance brought by scale—while reducing the computational
burden of running such large models by only activating parameters that are most relevant to the input
(Masoudnia and Ebrahimpour, 2014).

But a problem still remains: training large MoE models can still be prohibitively expensive and
resource intensive. This is particularly the case for those with limited GPUs available, putting
state-of-the-art models out of reach for many researchers.

∗Responsible for implementing the training and inferencing frameworks, hyperparameter sweeping.
†Responsible for project scoping, initial implementation of LoRA, benchmarking.

Stanford CS224N Natural Language Processing with Deep Learning

To address this, we develop a pipeline for converting outrageously large language models into
outrageously fast ones with minimal reduction in performance. We start from the view that the
feed-forward networks (FFNs) of transformers act as stores of knowledge (Dai et al., 2021). In
particular, the FFNs can be viewed as mixtures-of-experts, i.e. particular clusters of neurons hold
information on particular topics or knowledge categories and each cluster is largely independent
of the others (Suau et al., 2020). This enables a process of MoEfication, proposed by Zhang et al.
(2022), that splits the FFNs of a model into a mixture-of-experts. This process is imperfect, however,
and there is a reduction in performance on downstream tasks as a result of the process. We combat
this by utilizing low-rank adaption (LoRA) matrices (Hu et al., 2021) to fine-tune the MoEfied modes.
We show that we can recover nearly all of the performance loss in a parameter-efficient way.

2 Related Work

2.1 Model Acceleration

Model acceleration is a lively area of research that seeks to reduce the time and/or space complexity
of models (Choudhary et al., 2020). Important approaches include knowledge distillation, where
knowledge is transferred from a larger, more complex model (the “teacher”) to a smaller, simpler
model (the “student”) (Sanh et al., 2019; Jiao et al., 2020); model pruning, a compression technique
where parameters are systematically removed from a model utilizing strategies that minimize loss in
capability (Zhu and Gupta, 2017; Voita et al., 2019; Lin et al., 2020; Zhang et al., 2021); attention
approximation, where attention is approximated to reduce computational overhead from attention
computations (Wang et al., 2020; Kitaev et al., 2020; Ham et al., 2020; Choromanski et al., 2020);
model quantization, where floating-point precision is reduced by mapping continuous floating-point
values to a finite set of discrete values (Rokh et al., 2023; Polino et al., 2018; Bai et al., 2021); and
dynamic inference, where the computational graph of a model adjusts dynamically based on the input
at inference time (Xia et al., 2022; Xin et al., 2020; Hou et al., 2020).

2.2 Mixture of Experts

One approach to model acceleration that this project is based around is Mixture of Experts (MoE),
part of an avenue of research known as “conditional computation” that seeks to take advantage of
the greater capabilities of very large models while reducing training and inference speed by only
activating a subset of a model’s parameters on any given input (Bengio, 2013; Bengio et al., 2015).
MoE is an approach that precedes modern deep learning, having first been proposed in 1991 by
Jacobs et al. (1991) to speed up supervised training and inference. It has since become an active
area of research in deep learning and has shown success at reducing computational resources for
very large models (Masoudnia and Ebrahimpour, 2014). Notable recent MoE models include the
Switch-Transformer (Fedus et al., 2021), BASELayer (Lewis et al., 2021), Hash-Layer (Roller et al.,
2021) and GLaM (Du et al., 2022). There is ongoing research into architectural enhancements of
MoE models, like improved expert routing (Zhou et al., 2015), differentiable gating (Hazimeh et al.,
2021), improved token-expert allocation (Lewis et al., 2021), and hardware optimization (He et al.,
2021).

2.3 Efficient Fine-Tuning

A related area of research that has become particularly active in this era of scale is efficient fine-tuning
(Chen et al., 2023). A number of approaches have been proposed, e.g. adapter tuning (Houlsby et al.,
2019), prefix and prompt tuning (Li and Liang, 2021; Lester et al., 2021), and BitFit (Zaken et al.,
2021). One approach that has taken on particular significance and which is utilized by this project
is low-rank adaptation (LoRA), which reduces fine-tuning to training low-rank matrices (Hu et al.,
2021). The introduction of LoRA has spawned its own subfield of research, with new variants of
LoRA proposed often, e.g. MoLE (Wu et al., 2024).

2.4 Interpretation of Transformer Feed-Forward Networks

As a result of the success of transformer models, substantial research has gone towards developing a
theoretical understanding of their operation (Wallace et al., 2019; Kovaleva et al., 2019; Wang and Tu,

2

2020) and their linguistic understanding (Ramnath et al., 2020; Manning et al., 2020). Particular focus
has been placed on understanding the attention mechanism (Voita et al., 2019; Vig and Belinkov,
2019; Clark et al., 2019), but recent work has also examined their feed-forward layers (Geva et al.,
2022).

A general understanding has developed that the FFNs act as stores of memory (Dai et al., 2021). Geva
et al. (2021), for example, conceptualize the FFNs as “key-value memories”. Of particular relevance
to this project is the view that these stores of knowledge can be viewed as distinct experts—that
particular clusters of neurons hold information on particular topics or knowledge categories (Suau
et al., 2020). Evidencing this, Zhang et al. (2022) find that only small portions of a transformer’s
FFNs are activated on any given input and that these function as coherent units largely independent of
other parameters within the FNNs. This understanding has enabled a variety of interesting research
paths, like direct editing of factual knowledge through clever manipulation of the FFN parameters
(Cao et al., 2021; Meng et al., 2022).

2.5 MoEfication

This project makes particular use of an approach based on this understanding of FFNs called
MoEfication (Zhang et al., 2022). With MoEfication, the authors show that the FFNs of a pre-trained
model can be partitioned into distinct, sparsely activated experts with only modest reductions in
performance on downstream tasks. This enables researchers to take existing state-of-the-art models
that have already been trained and increase their computational efficiency by reducing the number of
FLOPS required at inference.

3 Approach

Our project is divided into two phases. First, we use MoEfication to convert the FFNs of a pretrained
model into a mixture-of-experts, which increases inference speed but results in modest loss in
performance on downstream tasks. Second, we utilize LoRA fine-tuning to recover model quality
with limited computational overhead.

MoEfication We follow the approach from Zhang et al. (2022) to MoEify a baseline model. Addi-
tionally, we utilize He et al. (2021)’s FastMoE PyTorch framework to increase MoE efficiency.

In a transformer model, the output from the attention layer is commonly followed by a DenseActDense
layer that processes the attention output as y = Woσ(Wix), where Wo ∈ Rd×h,Wi ∈ Rh×d, and σ
is an elementwise non-linear activation. In our formulation, we reorder and partition Wo into k parts:

W̃o =
[
W

(1)
o . . . W

(k)
o

]
and W̃i =

[
W

(1)
i . . . W

(k)
i

]⊤
so that y = Woσ(Wix) =

∑k
j=1 W

(j)
o σ(W

(j)
i (x)).

We refer to each pair of W (j)
i ,W

(j)
o as an expert. We use k-means clustering to create the k matrices,

each of the same dimension.

Next, the experts need to be sparsely activated to reduce inference complexity, so we create a routing
function g : Rd → Rk to select the top k experts. Our g is a 2-layer fully-connected network that
takes x as input, and tries to predict 1⊤σ(W j

i x) for each j. g is trained offline by collecting the values
of the outputs from the attention layer on a training set. Finally, our MoEfied model sums up the
top-k experts, which are selected from the output of g(x). Mathematically, the MoEfied output is ỹ =∑k

j=1 hard-top-n(g(x))W (j)
o σ(W

(j)
i (x)) where hard-top-n(x)j =

{
1 if |{xl : xl > xj}| ≤ n

0 otherwise

LoRA Finetuning Since the process of MoEfication is lossy, we attempt to recover the performance
loss with low-rank adaptors. Due to the sparsity of fine-tuning data, we adapt the idea of Low Rank
Adaption matrices (Hu et al., 2021), and make some additional change to preserve our sparse mixture
of experts structure in our model.

A naive application of LoRA to our model would introduce two set of matrices Ai ∈ Rd×r, Bi ∈
Rr×h, Ao ∈ Rh×r, Bo ∈ Rr×d, and modify the feedforward structure of the transformer as
ŷ = (Wo+AoBo)σ((Wi+AiBi)x) = Woσ(Wix)+AoBoσ(AiBix)+Woσ(AiBix)+AoBoσ(Wix)

3

Unfortunately, this is not compatible with sparse mixture of experts, as the effect of the lora matrices
would spill over the experts due to the crossover terms Woσ(AiBix) +AoBoσ(Wix).

Our main innovation is to instead introducing a single set of matrices A ∈ Rd×(h/k), B ∈ R(h/k)×d,
and modify the feedforward layer as

ỹ =

k∑
j=1

hard-top-n(g(x))W (j)
o σ(W

(j)
i (x)) +Aσ(Bx)

They key idea here is to introduce an always-active learned expert Aσ(Bx) that is specialized for a
particular task.

To establish a baseline, we forked the MoE-fication codebase for the MoE-fication script. We also
added an additional pipeline to support arbitrary T5 models, MoE-fication on the SST2, MNLI, and
RACE datasets, and various fine-tuning supports. The code is publicly available on github here:
https://github.com/chiyotsai/MoEfication-with-LoRA.

4 Experiments

4.1 Data

To measure the quality improvement, we finetune and measure the accuracy of our method on three
different classification tasks: Sentiment Classification on the Stanford Sentiment Tree Bank 2 (SST2)
dataset (Socher et al., 2013), Natural Language Inference on the Multi-Genre Natural Language
Inference (MNLI) dataset (Williams et al., 2018), and Multiple Choice Question Answering on the
ReAding Comprehension From Examination (RACE) (Lai et al., 2017) dataset. The number of
examples in each is presented in Table 1.

Training Set Validation Set Test Set
SST2 67.3k 872 1.82k
MNLI 393k 9.82k 9.83k
RACE 87.9k 4.89k 4.93k

Table 1: Number of examples in each dataset

The T5 models were pretrained on a dataset mixture that contains SST2 and MNLI but not RACE
(Colin et al., 2019). Consistent with this, we performed full fine-tuning on RACE to establish a
benchmark, while fine-tuning was not necessary for SST2 and MNLI.

T5 is a text-to-text model (meaning every task, whether it be autoregressive text generation, classifi-
cation, translation etc. is presented as feeding the model input text and generating output text), so the
datasets require preprocessing. See appendix A.1

4.2 Evaluation Method

4.2.1 Quality Evaluation

As the three tasks of interest are classification tasks, we use total accuracy as the principle metric
for evaluation. The output classes for each make this an easy measurement to obtain: SST2 has
output classes are 0 (negative) and 1 (positive); MNLI has output classes "entailment", "neutral", and
"contradiction"; and RACE has output classes are "A", "B", "C", "D". Although other metrics such
as F1-score and AUROC are also commonly used for evaluating classification performance, these are
not considered as the output classes are uniformly distributed.

To obtain a prediction from our language model, we first run the encoder on the input prompts and
cache the encoder output state. Next, we use the decoder and the encoder output state to get the
probability of each possible output classes. These probabilities are next normalized across the output
classes. Finally, we pick the class with the highest output probability as the prediction output.

These predictions are compared with the correct labels to compute the accuracy.

4

https://github.com/thunlp/MoEfication
https://github.com/chiyotsai/MoEfication-with-LoRA

4.2.2 Efficiency Evaluation

We benchmark the inference time of our models on a Nvidia RTX 3090. Wall time is used as
the measure of complexity since difficulty of parallelizing Mixture-of-Experts is still an actively
researched topic.

Algorithm 1 Pseudocode for benchmarking MoE model performance

Require: Model f , dataset D, number of iterations N
times = []
for i in range(N) do

Sample and tokenize x from D
Call torch.cuda.synchronize()
start_time← time.time()
Call f(x)
Call torch.cuda.synchronize()
end_time← time.time()
times.append(end_time − start_time)

end for
return times[10:N].mean() ▷ Discard the first 10 samples to allow GPU to warm up.

4.3 Experimental Details

We use pre-trained T5 models from Huggingface as the baseline. All performance quality experiments
are performed using T5-base, which contains h = 3072 hidden neurons in each of its DenseActDense
layers.

For MoEfication, we use constrained k-means clustering to partition the 3072 hidden neurons into
k = 96 experts, with each expert containing 32 neurons. Then, we run inference on the datasets to
collect snapshots of the neurons in feedforward layers. These snapshots are used to train a 2-layer
feed-forward layer that acts as the routing function, which selects n = 20 of the experts.

As T5 has not been fine-tuned on the RACE dataset, we performed an additional full finetuning on
RACE to serve as the baseline of our experiment. This finetuning is done with constant learning rate
of 1e-4 over 3 epochs. The checkpoint with the best accuracy is chosen as the baseline model.

For LoRA-finetuning, we apply rank-32 LoRA matrices to the DenseActDense layers. Rank 32 is
chosen as it has the same rank as an expert in our config. We finetune the model on the all three
datasets for 3 epochs, with a learning rate of 1e-3. A constant scheduler is used as applying learning
rate decay did not appear to improve the performance in our experiment.

Furthermore, we pick the largest batch size we could fit in our GPU, with the input length chosen to
cover at least 99% of the training data. All tokens above the input length are truncated. The numbers
are shown in Table 2. On SST2, we clip the input size to 512 tokens, with a batch size of 64. On

SST2 MNLI RACE
Batch Size 64 8 4

Input Length 512 1024 1536

Table 2: Dataset parameters used to finetune T5-base.

MNLI, we clip the input size to 1024 tokens, with a batch size of 8. On RACE, we clip the input size
to SST2 and MNLI for epochs with a batch size of 64, and RACE for 2 epochs with a batch size of 4.

To benchmark the complexity of our MoE models, we keep the ratio of activated experts constant
(20%), and benchmark our model by following Algorithm 1.

5

Model SST2 MNLI RACE
T5-Base 93.9% 85.6% 71.6%

+MoEfied GT 93.5% 85.0% 70.1%
+MLP Routing 92.3% 83.5% 67.5%

+LoRA 93.1% 85.3% 69.7%
+FFT 93.2% 84.5 % 67.9%

Table 3: Accuracy of T5-Base on SST dataset, with MoEfication and further fine-tuning.

Model T5-Small T5-Base T5-Large T5-3B
Baseline 100.0% 100.0% 100.0% 100.0%

+MoE MLP 134.8% 98.8% 85.8% 71.8%
+LoRA 135.1% 101.4% 88.9 % 71.1%

Table 4: Inference time of modified T5 on RTX 3090, normalized by the baseline inference time.

4.4 Results

4.4.1 Quality Results

Table 3 shows the comparison of our approach’s classification accuracy with that of the baseline
model. The row "T5-Base" shows the baseline model performance. The row "MoEfied GT" shows
a genie-assisted bound on the maximum accuracy achievable from a given class of MoE-model.
This bound is obtained by first running a full forward pass to record the feedforward layer’s output,
then selecting a subset of experts that well-approximates the full forward pass’s output measured
by L2 distance. The row "MLP Routing" shows the performance of using a routing function using
a multi-layer perception with a single hidden layer. The row "LoRA" shows the performance of
applying our expert-style LoRA to the MoEfied model with MLP routing function.

Finally, to provide a comparison between our expert-style LoRA with full finetuning, the row "FFT"
shows the performance of full finetuning on the MoEfied model with MLP routing function.

Our number shows that applying only a single LoRA that’s equivalent to an additional expert, we
could significantly improve the performance of MoEfied model, and recover most of the performance
lost in the routing function training process. Our classification accuracy is competitive with the
genie-assisted bound, and even surpasses it on the MNLI dataset. The comparison with fully finetuned
model also shows that increasing the number of tunable parameter in a MoEfied cannot recover the
performance lost to the Moefication process. Rather, we need to increase the information passes
through the MoEfied feedforward layers.

4.4.2 Complexity Results

Table 4 shows the complexity ratio of our MoE-fied model against the baseline model. Somewhat
surprisingly, our experiment shows that there is no efficiency gain from MoEfying T5-Base. In the
case of MoE with LoRA, we even incur some performance loss.

Motivated by this phenomenon, we decided to rerun the performance benchmark across different
sizes of T5 models, and plotted the results in figure 1a and 1b. The figures show that the overhead of
Mixture-of-Experts results in increased inference time for small models, but these overhead becomes
more negligible as model size increases. The relationship between inference time and model size can
be well-modeled by a function in the form axb, with Pearson’s correlation being greater than or equal
to 97% in all cases. Furthermore, the break-even point for MoEfication is coincidentally around the
size of T5-Base, the model we performed the experiment on.

6

(a) Ratio of inference time of MoEfied models as a
function of model size. Note that both MoE models
and MoE + LoRA models are well approximated by
O(size−0.15).

(b) Inference time of MoEfied models as a function
of model size. Note that the baseline model scales
as O(size0.88), and MoE models and MoE + LoRA
models are both O(size0.725).

Figure 1: Inferece time of MoEfied models.

5 Analysis

5.1 Complexity Analysis

We performed further benchmarking based on the results in Table 4 and found that most of the
overhead is due to the need of scattering and gathering the feedforward layers’ inputs to the different
experts in the GPUs. The additional time spent on computing the routing function is relatively small
compared to the increased memory communications in GPUs. In the case of T5-small, we even
observed a 35% increase in complexity. With better, more memory-efficient MoE implementation,
we might improve the performance of MoEs. But as of now, MoE models remains competitive only
in large models regimes.

5.2 Qualitative Analysis

To perform subjective evaluation of our MoEfied model, we look at couple examples from the SST2
dataset where our MoEfied model has made a mistake, but the baseline model succeeds. There are 23
such examples, and 15 of them are positive sentiments misclassified as negative, and 8 of them are
negative sentiments misclassified as positive. We list a couple examples below:

sst2 sentence: the primitive force of this film seems to bubble up from the vast collective memory of
the combatants .
Label: positive
Prediction: negative

sst2 sentence: there is nothing outstanding about this film , but it is good enough and will likely be
appreciated most by sailors and folks who know their way around a submarine .
Label: positive
Pred: negative

sst2 sentence: sticky sweet sentimentality , clumsy plotting and a rosily myopic view of life in the
wwii-era mississippi delta undermine this adaptation .
Label: negative
Pred: positive

Notice that many of the examples where positive sentiment is misidentified as negative have some
degrees of ambiguity. In particular, the sentence "there is nothing outstanding about this film , but
it is good enough ..." can be subjectively judged as either positive or negative. We believe these
examples are instances where the model needs to learn nuanced understanding of the dataset curator’s
classification criteria from the training set.

7

Figure 2: Distribution of expert activations. Figure from Zhang et al. (2022)

On the other hand, the negative examples showcases another type of failures. These examples consists
of more difficult vocabulary with more artistic, poetic prose. These instances represent difficulty
problems that require more reasoning capacity and thorough understanding from the model, which is
unfortunately reduced due to sparse expert activation.

We hypothesize these examples demonstrates a deficiency in our MoE-based system in tackling
problems in the long-tail. In Figure 2, we see that our MoEfied models tend to favor a couple
commonly used experts, with a pretty steep drop off after 20 or so experts. These uncommonly used
experts might represent deeper knowledge that’s not needed in simple tasks, but are required for more
complex tasks in our examples.

6 Conclusion

In this project, we develop a pipeline for converting a large pretrained model into a more resource-
efficient MoE model and efficiently recover most of the degradation in performance emanating from
the MoEfication process. We show that MoEfication can achieve 30% inference speed-up on GPU
for large models, while performance on several classification benchmarks is nearly unchanged. Addi-
tionally, we identify several scaling laws for MoEfication, showing that the benefits of MoEfication
increase with model size (but become negative for small models), and that the addition of LoRA has
negligible effects on this pattern.

Some limitations of our studies are that we have only demonstrated the accuracy on T5-base, which
is a 220M parameter encoder-decoder model. Our tests on inference speed of T5-3B, however, show
that efficiency increases with model size, so in future works, we would like to check if our approach
scales well to billion-parameter models, as well as to decoder-only architectures.

Furthermore, while our approach can recover the performance degradation from having a suboptimal
routing, we still observe a small gap between the baseline model and the best MoEfied model. Whether
this performance difference is fundamental to an MoE system, or it can be further ameliorated with a
better expert partitioning method is still an open question.

8

References
Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang,

Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. 2023. Scaling laws for generative
mixed-modal language models.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. 2021. BinaryBERT: Pushing the limit of BERT quantization. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 4334–4348, Online.
Association for Computational Linguistics.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. 2015. Conditional computa-
tion in neural networks for faster models. Online. arXiv.

Youshua Bengio. 2013. Deep learning of representations: Looking forward. In Proceedings of SLSP,
pages 1–37, Online.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, page
6491–6506, Online. Association for Computational Linguistics.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, and Diyi Yang. 2023. Parameter-efficient
fine-tuning design spaces. arXiv preprint arXiv:2301.01821v1.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamás
Sarlós, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy J.
Colwell, and Adrian Weller. 2020. Rethinking attention with performers. CoRR, abs/2009.14794.

Tejalal Choudhary, Vipul Misrha, Anurag Goswami, and Jagannathan Sarangapani. 2020. A com-
prehensive survey on model compression and acceleration. volume 53, pages 5113–5155, Online.
Artificial Intelligence Review.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. 2019. What does bert
look at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341.

Raffel Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the limits of transfer learning with a unified
text-to-text transformer. Google Research.

Damai Dai, Li Dong, Yaru Hao, Zhigand Sui, Baobao Chang, and Furu Wei. 2021. Knowledge
neurons in pretrained transformers. Online. ArXiv.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen, and
Claire Cui. 2022. GLaM: Efficient scaling of language models with mixture-of-experts. In Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 5547–5569. PMLR.

William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. CoRR, abs/2101.03961.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. 2022. Transformer feed-forward
layers build predictions by promoting concepts in the vocabulary space.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer feed-forward layers
are key-value memories. pages 8440–8451, Online. Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.

Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H. Oh, Yeonhong Park, Yoonho Song, Jung-Hun
Park, Sanghee Lee, Kyoung Park, Jae W. Lee, and Deog-Kyoon Jeong. 2020. Accelerating attention
mechanisms in neural networks with approximation. In 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 328–341.

9

http://arxiv.org/abs/2301.03728
http://arxiv.org/abs/2301.03728
https://doi.org/10.18653/v1/2021.acl-long.334
https://arxiv.org/abs/1511.06297
https://arxiv.org/abs/1511.06297
https://arxiv.org/abs/1305.0445
https://doi.org/10.18653/v1/2021.emnlp-main.522
http://arxiv.org/abs/2301.01821
http://arxiv.org/abs/2301.01821
http://arxiv.org/abs/2009.14794
https://doi.org/10.1007/s10462-012-9338-y
https://doi.org/10.1007/s10462-012-9338-y
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.2104.08696
https://doi.org/10.48550/arXiv.2104.08696
https://proceedings.mlr.press/v162/du22c.html
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2203.14680
http://arxiv.org/abs/2203.14680
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.1109/HPCA47549.2020.00035
https://doi.org/10.1109/HPCA47549.2020.00035

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao,
Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin, Yanyan Lan, Yang Liu, Zhiyuan
Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin Zhao,
and Jun Zhu. 2021. Pre-trained models: Past, present and future.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua Chen,
Rahul Mazumder, Lichan Hong, and Ed Chi. 2021. Dselect-k: Differentiable selection in the
mixture of experts with applications to multi-task learning. In Advances in Neural Information
Processing Systems, volume 34, pages 29335–29347. Curran Associates, Inc.

Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and Jie Tang. 2021. Fastmoe: A fast
mixture-of-expert training system. arXiv preprint arXiv:2103.13262.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. 2020. Dynabert: Dynamic
bert with adaptive width and depth. In Advances in Neural Information Processing Systems,
volume 33, pages 9782–9793. Curran Associates, Inc.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning
for NLP. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991. Adaptive
mixtures of local experts. In Neural Computation, volume 3, pages 79–87, Online.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. 2020. TinyBERT: Distilling BERT for natural language understanding. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 4163–4174, Online. Association
for Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language
models.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The efficient transformer. In
International Conference on Learning Representations.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. 2019. Revealing the dark
secrets of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 4365–4374, Hong Kong, China. Association for Computational
Linguistics.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017. RACE: Large-scale
ReAding comprehension dataset from examinations. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 785–794, Copenhagen, Denmark.
Association for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 3045–3059, Online and Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. 2021. BASE
layers: Simplifying training of large, sparse models. CoRR, abs/2103.16716.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190.

10

http://arxiv.org/abs/2106.07139
https://proceedings.neurips.cc/paper_files/paper/2021/file/f5ac21cd0ef1b88e9848571aeb53551a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f5ac21cd0ef1b88e9848571aeb53551a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/2106.09685
http://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf
http://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.372
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2103.16716
http://arxiv.org/abs/2103.16716

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. 2020. Dynamic model
pruning with feedback.

Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. 2020.
Emergent linguistic structure in artificial neural networks trained by self-supervision. Proceedings
of the National Academy of Sciences, 117(48):30046–30054.

Saeed Masoudnia and Reza Ebrahimpour. 2014. Mixture of experts: a literature survey. volume 42,
pages 275–293, Online. Artificial Intelligence Review.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2022. Locating and editing factual
associations in gpt. In Advances in Neural Information Processing Systems, volume 35, pages
17359–17372, Virtual/Online.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression via distillation and
quantization. CoRR, abs/1802.05668.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan Heek,
Kefan Xiao, Shivani Agrawal, and Jeff Dean. 2023. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5.

Sahana Ramnath, Preksha Nema, Deep Sahni, and Mitesh M. Khapra. 2020. Towards interpreting
BERT for reading comprehension based QA. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 3236–3242, Online. Association for
Computational Linguistics.

Babak Rokh, Ali Azarpeyvand, and Alireza Khanteymoori. 2023. A comprehensive survey on model
quantization for deep neural networks in image classification. ACM Transactions on Intelligent
Systems and Technology, 14(6):1–50.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. 2021. Hash layers for large
sparse models. CoRR, abs/2106.04426.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled
version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. CoRR, abs/1701.06538.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Xavier Suau, Luca Zappella, and Nicholas Apostoloff. 2020. Finding experts in transformer models.
Online. ArXiv.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2022. Efficient transformers: A survey.
ACM Comput. Surv., 55(6).

Jesse Vig and Yonatan Belinkov. 2019. Analyzing the structure of attention in a transformer language
model. CoRR, abs/1906.04284.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages 5797–5808,
Florence, Italy. Association for Computational Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations,
pages 7–12, Hong Kong, China. Association for Computational Linguistics.

11

http://arxiv.org/abs/2006.07253
http://arxiv.org/abs/2006.07253
https://doi.org/10.1007/s10462-012-9338-y
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://arxiv.org/abs/1802.05668
http://arxiv.org/abs/1802.05668
https://doi.org/10.18653/v1/2020.emnlp-main.261
https://doi.org/10.18653/v1/2020.emnlp-main.261
https://doi.org/10.1145/3623402
https://doi.org/10.1145/3623402
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.48550/arXiv.2005.07647
https://doi.org/10.1145/3530811
http://arxiv.org/abs/1906.04284
http://arxiv.org/abs/1906.04284
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/D19-3002

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Linformer: Self-attention
with linear complexity. CoRR, abs/2006.04768.

Wenxuan Wang and Zhaopeng Tu. 2020. Rethinking the value of transformer components. In
Proceedings of the 28th International Conference on Computational Linguistics, pages 6019–6029,
Barcelona, Spain (Online). International Committee on Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics.

Xun Wu, Shaohan Huang, and Furu Wei. 2024. MoLE: Mixture of loRA experts. In The Twelfth
International Conference on Learning Representations.

Wenhan Xia, Hongxu Yin, Xiaoliang Dai, and Niraj K. Jha. 2022. Fully dynamic inference with deep
neural networks. IEEE Transactions on Emerging Topics in Computing, 10(2):962–972.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. 2020. DeeBERT: Dynamic early
exiting for accelerating BERT inference. In Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 2246–2251, Online. Association for Computational
Linguistics.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. CoRR, abs/2106.10199.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Pen Li, Maosong Sun, and Jie Zhou. 2022. Moefication:
Transformer feed-forward layers are mixtures of experts. Online. ArXiv.

Zhengyan Zhang, Fanchao Qi, Zhiyuan Liu, Qun Liu, and Maosong Sun. 2021. Know what you
don’t need: Single-shot meta-pruning for attention heads. AI Open, 2:36–42.

Yanqi Zhou, Lei Tao, Hanxiao Liu, Nan Du, Yangping Huang, Vincent Zhao, Andrew M Dai, Zhifeng
Chen, Quoc V Le, and James Laudon. 2015. Mixture-of-experts with expert choice routing.
volume 35, pages 7103–7114, Online. Advances in Neural Information Processing Systems.

Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: exploring the efficacy of pruning for
model compression.

12

http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2006.04768
https://doi.org/10.18653/v1/2020.coling-main.529
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://openreview.net/forum?id=uWvKBCYh4S
https://doi.org/10.1109/TETC.2021.3056031
https://doi.org/10.1109/TETC.2021.3056031
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
https://doi.org/10.48550/arXiv.2110.01786
https://doi.org/10.48550/arXiv.2110.01786
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.05.003
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.05.003
https://proceedings.neurips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
http://arxiv.org/abs/1710.01878
http://arxiv.org/abs/1710.01878

A Appendix

A.1 Input Preprocessing and Targets

A.1.1 SST2

SST2 is already very close to a text-input text-output structure, so the only input preprocessing needed
is to prompt T5 with the desired output type by prepending “sst2 sentence”. T5 has already been
fine-tuned on SST2 using this format so did not require additional fine-tuning. Below is an example
of the preprocessing:

Original:
Example Sentence: “that loves its characters and communicates something rather beautiful about
human nature”
Example label: 1

Preprocessed:
Model Input: “sst2 sentence: that loves its characters and communicates something rather beautiful
about human nature”
Model Target: “positive“

A.1.2 MNLI

T5 was also pretrained on MNLI, so we follow T5’s preprocessing steps:

Original:
Example Premise: “Conceptually cream skimming has two basic dimensions - product and
geography.”
Example Hypothesis: “Product and geography are what make cream skimming work.”
Example Attribution: “Neutral“

Preprocessed:
Model Input: “mnli hypothesis: Conceptually cream skimming has two basic dimensions - product
and geography. premise: Conceptually cream skimming has two basic dimensions - product and
geography.”
Model Target: “neutral“

A.1.3 RACE

RACE was not included in T5’s training mixture, so we performed custom preprocessing and
fine-tuning:

Original:
Example Article: “There is not enough oil in the world now. As time goes by, it becomes less and
less, so what are we going to do when it runs ou...”
Example Question: “According to the passage, which of the following statements is TRUE?”
Example Options: ["There is more petroleum than we can use now.", "Trees are needed for some
other things besides making gas.", "We got electricity from ocean tides in the old days.", "Gas wasn’t
used to run cars in the Second World War."]
Example Answer: “B“

Preprocessed:
Model Input: “question: According to the passage, which of the following statements is TRUE?
options: A: There is more petroleum than we can use now. B: Trees are needed for some other things
besides making gas. C: We got electricity from ocean tides in the old days. D: Gas wasn’t used to run
cars in the Second World War. article: There is not enough oil in the world now. As time goes by, it
becomes less and less, so what are we going to do when it runs ou...”
Model Target: “B“

13

We put the question and options before the article to avoid information loss due to truncation (which
affects <1% of examples) during tokenization.

14

	Introduction
	Related Work
	Model Acceleration
	Mixture of Experts
	Efficient Fine-Tuning
	Interpretation of Transformer Feed-Forward Networks
	MoEfication

	Approach
	Experiments
	Data
	Evaluation Method
	Quality Evaluation
	Efficiency Evaluation

	Experimental Details
	Results
	Quality Results
	Complexity Results

	Analysis
	Complexity Analysis
	Qualitative Analysis

	Conclusion
	Appendix
	Input Preprocessing and Targets
	SST2
	MNLI
	RACE

