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Abstract

BERT is a powerful generative model that can construct rich, contextualized word
representations. In this paper, we investigate the ability of BERT to perform on
three separate tasks: Sentiment Analysis, Paraphrase Detection, and Semantic
Textual Similarity. We first implement pre-trained BERT weights and fine-tune on
each individual task, introducing an individual classifier to enhance performance
across each of the three tasks. We then implement innovative feature engineering
when predicting the tasks, and make use of different loss functions and extensions
optimized for each individual individual task. We find that by optimizing individual
performance on all three tasks, we obtained comparable and even higher accuracy
and performance than a multitask classifier across all 3 tasks, obtaining an accuracy
of 0.526 for SST, 0.880 for Paraphrase, and a pearson coefficient of 0.873 for STS.
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Both Medhanie and Chinmay contributed to the codebase as well as writing the paper. We both
implemented the baseline, and Medhanie took charge of the different attention mechanism eespecially
to boost the score of the SST task, while Chinmay applied different techniques such as Cosine
Similarity and feature engineering to attempt to boost the scores of Paraphrase and STS. Overall, the
work was equally distributed.

2 Introduction

The field of Natural Language Processing (NLP) has seen unprecedented advances over the last
decade, connecting computational power with language. These developments allow machines to
understand, interpret, and generate text similar to actual humans. Advances in this field have
contributed to the rapidly evolving field of generative modeling, particularly with Large Language
Models (LLMs) and other fields. NLP encompasses a wide range of applications, from automated
translation and sentiment analysis to question-answering systems and beyond.

There are many challenges in NLP, with one of the greatest being inherent complexity of human
languages, across cultures and dialects. This complexity is largely due to variability in context,
ambiguity, and nuance, aspects of language that humans can pick up eventually over time, but
machines have difficulty interpreting. A key moment in the evolution of NLP is the introduction
of the transformer architecture, laying the foundation for computational models to achieve success
interpreting a variety of language understanding tasks (Vaswani et al.| 2017).
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Among these, BERT (Bidirectional Encoder Representations from Transformers), harnesses the
power of transformer architectures to pre-train deep bidirectional representations from unlabeled
text by jointly conditioning on both left and right context in all layers (Devlin et al.}|2019). BERT’s
ability to construct rich, contextualized word representations continues to be powerful in the field, yet
despite BERT’s success, the application of such models to specific NLP tasks requires not only the
accurate interpretation of linguistics but also an understanding of subtler aspects of communication.
We aim to study the ability to leverage a pre-trained BERT model on three separate tasks: Sentiment
Analysis, Paraphrase Detection, and Semantic Textual Similarity.

To address this problem of multitask performance, we start with pre-trained BERT weights and
fine-tune on each individual task, introducing an individual classifier to enhance performance across
each of the three tasks. We implement innovative feature engineering when predicting the tasks, and
make use of different loss functions and extensions optimized for each individual task. In addition, to
increase performance, we parallelized the input across multiple GPUs for efficient training. We find
that by optimizing individual performance on all three tasks: sentiment analysis, paraphrase detection
and STS, we obtained comparable and even higher accuracy and performance than a multitask
classifier across all three tasks.

3 Related Work

The introduction of BERT was a significant milestone in NLP, allowing for the classification of
multiple different language tasks, including the tasks of sentiment analysis, paraphrase detection, and
SST. Leveraging transfer to achieve state-of-the-art performance across multiple NLP benchmarks,
several variations of BERT have been developed to optimize efficiency and performance. In particular,
RoBERTa extended BERT by training on a significantly larger dataset, removing the next-sentence
prediction objective and dynamically changing the masking pattern applied to the training data (Liu
et al., 2019). RoBERTA also demonstrated that hyperparameter tuning does in fact have a significant
impact on the accuracy of a language model, emphasizing the need for an efficient approach in
language model training.

Similarly, ALBERT presented a lite version that allowed for lower memory consumption and
increasing the training speed of BERT, implementing a self-supervised loss that can understand
inter-sentence coherence better, as well as parameter-sharing across layers. Multitask Learning
(MTL) has emerged a promising approach for using BERT more efficiently by training a single model
on multiple tasks simultaneously. The premise of this approach is that shared representations can
improve generalization by leveraging commonalities across even marginally related tasks. Multi-task
Deep Neural Network (MT-DNN) uses MTL to extend BERT via an additional layer to perform
various tasks, displaying improved performance on benchmarks such as GLUE, SNLI, and SciTail.
(Liu et al.[2019).

The effectiveness of BERT in multitask settings has also been explored in domain-specific applications.
It was shown that the use of a unified BERT model outperformed task-specific models for specific
tasks like joint entity and relation extraction in biomedical text (Peng et al.| [2020)), highlighting
BERT’s adaptability across tasks requiring deep domain knowledge. Adapting BERT for tasks like
paraphrase detection and semantic textual similarity, as proposed in this paper, require a developed
understanding of sentence structure and meaning. Models like Sentence-BERT have been able to
generate specific sentence embeddings that can identify similar structured phrases within contexts
(Reimers and Gurevychl 2019).

A key aspect of multitask learning is crafting adaptable loss functions, incorporating the balance of
several different task-specific objectives. Dynamically balancing the loss contribution for each tasks
highlights the importance of task selection and maximizing the value in joint training of one loss
function. In summary, the development of BERT-based models and multitask classification algorithms
have allowed for faster compute and training across several tasks, and in this paper we study the
ability of BERT to perform across three objectives in particular, comparing multitask performance
against individualized fine-tuning on separate tasks.



4 Approach

We are using BERT, a transformer-based model that generates contextual word representations, to
perform the three downstream tasks of sentiment analysis, paraphrase detection, and semantic textual
similarity. BERT first converts sentence input into tokens and then uses a trainable embedding layer
across each token (Devlin et al.| 2019). These learnable embeddings include token, segment, and
position embeddings, which encode for contextual representations within text. BERT then makes use
of 12 Encoder Transformer layers, consisting of multi-head attention, an additive and normalization
layer, a feed-forward layer, and a final additive and normalization layer with residual connection
(Vaswani et al., 2017)). The BERT architecture also applies dropout to the output of sub-layers, a
regularization technique to prevent overfitting of the training data.

After implementing BERT and applying it to a single sentiment analysis task over multiple datasets,
we then implemented a multitask classifier for BERT that uses the weights of a pre-trained BERT
model to predict sentiment analysis, paraphrase detection, and semantic textual similarity. Our
baselines was then using these pretrained weights from the BERT model and finetuning both these
weights and the classifier on the SST dataset (meant for sentiment analysis) (?). We then evaluated
this model on all three tasks as the baseline, with the expectation that the model would have lower
performance on the paraphrase and sentiment tasks. The accuracies and correlations for this baseline
model on the 3 tasks are: 0.309, 0.38, and -.103, respectively, with a final score of 0.379.

This baseline model fine-tunes on simply sentiment classification, and was not able to generalize well
to the other tasks. So initially, we implemented a single multitask classifier for all 3 tasks, noting the
accuracy, correlation, and other model evaluation methods. We first used round robin curriculum to
create an approach that is more generalizable across the three tasks. Within each batch, we iterate
through the three SST, Paraphrase, and STS datasets, updating the individual parameters during each
step. Our forward function returned the pooler output layer from the BERT embeddings, for all of our
tasks. For SST, we apply dropout to the outputs of forward, and passit trhough a linear classifier layer
to obtain the logits. For Paraphrase, we similarly apply dropout on the two outputs from the BERT
model, which correspond to pairs of sentences. We then concatenate these and pass the combined
embeddings into a linear classifier layer to obtain the logit. And for STS, we had a early identical to
Paraphrase, except using a different linear classifier to obtain the logit. From these, we compute the
forward and backward pass necessary for training, and within each batch we considered a combined
loss, calculated to be the average of the three individual task losses. We used Cross-Entropy Loss
for SST and Paraphrase and MSE Loss for STS. We finally took the gradient of combined loss with
respect to our model parameters in order to update our weights.

However, we noticed that training each task separately led to subpar performance, and realized
that the gradient directions of different were perhaps conflicting with one another — therefore, we
incorporated gradient surgery to mitigate this. More specifically, we used the PCGrad implementation
to ensure the gradients of the three tasks were projected onto the plane that was normal to each of the
other task’s gradients:
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In an attempt to improve the performance of the multitask classifier, we use the pretrained BERT
weights and finetune a separate model on each dataset for the corresponding task. For the SST
classification task, we take the ouputted embeddings from BERT and perform multiplicative attention,
calculated as:
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Multiplicative attention has been found to be useful at enabling the model to attend to different parts
of the input sequence with varying degrees of importance, helping incorporate relevant contextual
information into its predictions, eventually leading to more accurate and context-aware outputs
(Luong, Pham, and Manning 2015).



We pass this through a 3-layer feed-forward neural network, and utilize the output of this network
in our predict sentiment function. Dropout is applied and a is passed through a linear sentiment
classifier layer, outputting logits. For each class ranging from O to 4 we get a logit, and we calculate
the Cross-Entropy Loss from these.

For the Paraphrase binary classification task, the forward pass is the same as prior, performing
multiplicative attention and a feed-forward neural network. We perform the forward pass on the
input ids and the masks (for each sentence), and first concatenate the two outputs together. Adding
to this, we also concatenate the square of the sum of the two embeddings and the square of the
difference of the two embeddings. From this feature engineering, we can learn not only the individual
embeddings, but also the difference between the embeddings - a sense of graphical relativity between
the embeddings. To ensure a non-negative sum and distance as well as symmetry between the
embeddings, we apply this squared function to the sum and difference. We then concatenate the
Cosine Similarity between the output embeddings as a more explicit similarity metric between the
potential paraphrases, completing our engineering features. Finally, a linear classifier layer is applied
to the total features, outputting logits. We then compute the Cross-Entropy Loss between the logits
and the labels.

Cosine Similarity(u, v) = ————

I

For the STS task, the forward pass consists of only multiplicative attention on the inputs ids and
masks, with no feed-forward neural network, as determined empirically through testing. We then
compute the cosine similarity between the two outputs, between 0 and 1. We scale this value by 5
because the STS output values for semantic text similarity are between 0 and 5, obtaining a single
logit. We then compute the Mean Squared Error between the aforementioned logits and the true
labels.

Due to the computational challenges these provided, we also implemented parallelizing the input for
training across multiple GPUs. In the forward pass, the model is replicated on each GPU, parallelizing
the input, and in the backwards pass, gradients from each replicated model are summed.
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S Experiments

5.1 Data

The data we will use is also outlined in the default paper spec. The sentiment analysis dataset is the
Stanford Sentiment Treebank, consisting of 11,855 single sentence extracted from movie reviews,
parsed with the Stanford parser and ultimately is made up of 215,514 annotated unique phrases
(Socher et al}|2013). The actual dataset consists of sentence and id, and a corresponding sentiment
value from negative to positive, 0 to 4 respectively. The paraphrase detection dataset is of a subset
of the Quora dataset. Each example in this dataset consists of two sentences and whether they are
semantic duplicates of eachother, corresponding to a 0 or 1. The STS dataset consists of two sentences
and a value from O to 5 that assesses the similarity of the two phrases. In the baseline, we are simply
finetuning our model and classifier on the SST dataset, saving this model and making predictions on
the three tasks using those weights. However, we extend this to finetune on the corresponding dataset
for each of the tasks - namely the SST data for sentiment analysis, Quota dataset for paraphrasing,
and SemEval STS dataset for the semantic similarity task.

5.2 Evaluation method

We evaluate the model on the training dataset during finetuning, and a separate evaluation dataset after
finetuning, for each task. For the sentiment analysis and paraphrase detection tasks, we evaluated
using F1 score and accuracy, and for semantic similarity, we evaluated using Pearson Correlation
Coefficient.

5.3 Experimental details

We ran the experiments using the finetuning option, which trains the BERT model and classifier.
We used Weights and Biases to perform a "sweep" in order to intelligently choose hyperparameters,



namely batch size and learning rate. Essentially, we provided a configuration including an objective
we wanted to maximize for each task, accuracy, correlation, etc. We then provided batch size values
of 4, 8, 12 as well as learning rate bounds of 1e-4 and 1e-6. We configured a random method, so for
each training count (we had 20 counts), a random learning rate within the proposed bounds as well as
a random batch size from those proposed was selected. We did this for the SST and STS tasks. We
did not do this for Paraphrase, and we did not optimize with respect to epochs due to time constraints,
One of our sweeps graphs can be seen below.
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Figure 1: SST Hyperparameter W&B Sweeps

From these sweeps, we learned that the best (of 20) hyperparameter configurations were batch sizes
of 12 and 12 as well as learning rates of 0.0000058123214148615665 and 0.00001308967461164673
for SST and STS, respectively. Thus, we used these learning rates and batch sizes for our SST and
STS runs with ten epochs.. We used ten epochs for Paraphrase as well with a batch size of 8 and
learning rate of le-5. We also parallelized our code to work with Torch’s DataParallel. We used
two GPUs for training STS and SST and four GPUs for training Paraphrase. Training STS took ten
minutes, SST eleven minutes, and Paraphrase almost five hours.

5.4 Results

When evaluating each of the models, we measure accuracy for the SST and Paraphrase tasks and
Pearson Correlation for STS. In the following table, RR stands for Round-robin, GS stands for
Gradient Surgery, SFT stands for Separate Fine-tuning, DPA stands for Dot Product Attention, MA
stands for Multiplicative Attention, and CS stands for Cosine Similarity, and the following scores are
on the dev set:

Model SST  Paraphrase STS
Baseline 0.309 0.380 -0.103

RR 0.482 0.686 0.380

RR + CS 0.484 0.686 0.625
RR +CS +GS 0.491 0.742 0.687
SFT 0.522 0.783 0.385

SFT + CS 0.514 0.785 0.641
SFT + DPA +CS 0.519 0.860 0.851
SFT+ MA + CS  0.526 0.880 0.873

Table 1: Model accuracy and correlation on the dev set

We tested several models on the dev set as shown above, ranging from the baseline to modifications
with round robin, and different types of attention with separate fine-tuning, as seen in Table 1. The
SST, Paraphase, and STS increased drastically when using Round Robin, as this was able to generalize
well among all 3 of the datasets. We found that using Cosine Similarity made a large difference



especially in the STS task, as concatenating the cosine similarity embeddings between the two output
embeddings was able to encode differences between phrases in the vector space. Gradient Surgery
allowed the model to generalize better across all the tasks, as expected, as the gradient directions
were projected onto other tasks’s gradients. However, the largest difference was when we decided to
explore the possibility of specific fine-tuning, comparing these results to the multitask methods of
round robin.

Adding Cosine Similarity to SFT allowed for a significant increase in the STS, as expected, due
to similar reasons as above. We then decided to test multiple methods of attention in the forward
pass for each of the individual models, before passing these into a feed-forward neural network, as
described in a previous section. Dot-product Attention led to a large jump in the paraphrase accuracy
and STS correlation, but ultimately Multiplicative Attention performed the best on all 3 of the tasks,
obtaining an accuracy of 0.526 for SST, 0.880 for Paraphrase, and a pearson coefficient of 0.873 for
STS. Multiplicative attention might be more effective than dot product attention int these multiple
text semantic similarity and paraphrasing tasks because it allows for more fine-grained modulation of
attention weights. By incorporating learnable parameters in the attention calculation, multiplicative
attention is able capture complex relationships between words and phrases, resulting in improved
semantic representation and better discrimination between paraphrases.

Our final submission of a separately fine-tuned model using multiplicative attention and cosine
similarity on the test set performed as shown below:

Model SST
SFT+ MA +CS 0.532

Table 2: Best model accuracy and correlation on test set

STS
0.865

Paraphrase
0.880

Our final model was in 10th place on the Default Project TEST Leaderboard at the time of submission,
with comparatively high STS scores, likely due to the inclusion of Multiplicative Attention and Cosine
Similarity.

6 Analysis
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Figure 2: a) Confusion matrix for SST predicted and actual. b) Confusion matrix for Paraphrase
predicted and actual. c) Scatterplot for STS predicted vs. actual.

We generate confusion matrices, heatmaps, and scatterplots for SST, Paraphrase, and STS, and we
truly see the effectiveness of the model. As seen in Figure 2a, for SST, there appears to be highly
accurate sentiments predicted for sentiments 1 and 3, which are moderate sentiments, whereas one
would expect that the model would predict phrases with extreme sentiment with high accuracy. One
potential reason for this could be due to the class imbalance present in the training dataset, as there
are more target labels for 1 and 3 in the distribution.

In addition, there is an error band of wrong class predictions present around the sentiment +1, which
is expected. From Figure 2b, the paraphrase confusion matrix shows a very high true positive and
true negative values, with low false positive and false negative values, both quantitatively and visually.
This error band also is present in the STS predictions, as seen in Figure 2c, with incorrect predictions
occurring within this window for the regression task. One interesting feature to note is that some
predictions are negative, which is theoretically not possible, but is a consequence of using a complex



algorithm for this regression task. This could be addressed in future steps to ensure that there is a
cutoff or scaling within the task bounds.
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Figure 3: a) Histogram of distribution of actual values for STS on dev set. b) Histogram of
distribution of predicted values for STS on dev set.

We see from Figure 3a that the distribution of actual values for STS is multimodal, containing several
peaks at the integers from O to 5. This multimodality of the data could have potentially posed
problems for the model as the data is supposed to be continuous yet is still almost discrete in nature.
From Figure 3b, the predicted values appear to be skewed left, which could also be a result of this
imbalance in the training data as mentioned above, and balancing out this data prior to developing a
model could prove to be beneficial in the future.

Now, we evaluate our model qualitatively. Moreover, we will inspect our model’s performance on
the dev set to see where it succeeds and where it might go wrong. One example involves our model
predicting an STS score of 1.98 for the sentences "Work into it slowly" and "It seems to work" when
it should have been 0.0. BERT models are designed to understand the context of each word within a
sentence. The model might be picking up on the contextual or thematic similarity between "Work
into it slowly." and "It seems to work." Both sentences involve the concept of "work’ and a qualitative
aspect (’slowly’ vs. ’seems to work’), which might lead the model to assess them as somewhat similar,
even if their literal intentions are different.

Delving into the architecture of BERT, its exemplary performance in predicting the sentiment score
as 0 for the sentence "But it’s too long and too convoluted and it ends in a muddle" underscores
the model’s advanced contextual comprehension. This proficiency is largely attributable to BERT’s
bidirectional design and its utilization of self-attention mechanisms. Unlike traditional models, BERT
processes input data in both directions simultaneously, which empowers it to capture the intricate
nuances of language context more effectively. Furthermore, the self-attention mechanism enables
BERT to weigh the importance of each word in a sentence relative to others, facilitating a nuanced
understanding of how terms like "too long" and "too convoluted" influence the overall sentiment in a
specific context. This architectural sophistication allows BERT to discern the negative sentiment of
the sentence by evaluating the contextual significance of each phrase, despite the potential neutrality
or positivity of these words in different scenarios.

7 Conclusion

In this project, we investigated the ability and performance of BERT on three Natural Language
Processing tasks — Sentiment Analysis, Paraphrase Detection, and Semantic Textual Similarity.
Experimenting with both multitask classifiers and fine-tuning separate models for each task, we
discovered that the model with separate fine-tuning, multiplicative attention, and cosine similarity
performed the best on all 3 tasks. While multitask classifiers allowed for faster compute and
performance, accuracy in specific individualized tasks can still be improved, with separate models
and classifiers outperforming on these three semantically challenging tasks.

In the future, it would be interesting to first of all normalize the distribution of the data before
training the model, allowing for more equal representation of all classes in tasks. We would also



like to implement pre-training, utilizing a contrastive pre-training objective using comparison of
adjacent sentences in unlabeled corpus data. Lastly, more hyper parameter tuning would be beneficial,
allowing for deeper exploration of the hyper parameter space.
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