
Multi Task Fine Tuning of BERT Using Adversarial
Regularization and Priority Sampling

Stanford CS224N Default Project

Chloe Trujillo
Department of Computer Science

Stanford University
chloe818@stanford.edu

Mohsen Mahvash
Department of Computer Science

Stanford University
mahvash@stanford.edu

Mentor: Annabelle Tingke Wang
No outside mentor

Abstract

This study utilizes the Adversarial Regularization technique alongside adaptive
priority sampling of task databases to enhance the efficacy of the BERT BASE
model across three distinct tasks: sentiment analysis, paraphrase detection, and
text similarity regression. The Adversarial Regularization method augments the
standard loss function with an additional term, mitigating the classifier model’s
response to minor input embedding variations fed into the BERT model. This
regularization mechanism combats overfitting. Additionally, adaptive priority
sampling dynamically adjusts the data stream utilized for training optimization,
considering factors such as real-time task performance metrics for training and
development sets, and the proportional size of each dataset.

1 Introduction

In the realm of machine learning, particularly within natural language processing (NLP), traditional
deep learning methods heavily rely on extensive labeled datasets for supervised learning. However,
acquiring such large amounts of labeled data can often be impractical or unfeasible in real-world
scenarios. A promising alternative approach has emerged, centered around leveraging pre-trained
models that reduce the dependency on labeled data for initial training. These pre-trained models can
be fine-tuned or adapted using smaller sets of labeled data tailored to specific tasks.

Recent advancements have led to the development of several pre-trained language models, such as
BERT Devlin et al. (2018) and GPT-3 Radford et al. (2019), which have been trained on extensive
datasets. These pre-trained models serve as powerful tools in NLP, allowing for more efficient
utilization of labeled data. However, fine-tuning on limited data presents the risk of overfitting, where
the model overly tailors itself to the training data, potentially compromising its performance on new,
unseen data. To address this, various regularization techniques can be applied.

Another critical aspect in NLP is multitasking, which holds great promise in enhancing efficiency,
robustness, and adaptability in addressing diverse linguistic tasks. Multitasking models involve
training a single model to perform multiple NLP tasks simultaneously, leveraging shared knowledge
and representations across tasks. This approach not only promotes improved generalization but also
optimizes resource utilization by eliminating the need for separate models for each task, making it
particularly valuable in resource-constrained environments.

In this paper, our objective is to explore regularization and sampling techniques to develop a multitask
BERT model tailored for three distinct tasks: sentiment analysis, paraphrase detection, and text
similarity regression. Our primary focus is on enhancing performance through the implementation of
adversarial regularization techniques and adaptive round-robin sampling of databases of the tasks. By

Stanford CS224N Natural Language Processing with Deep Learning

employing adversarial regularization, we aim to smooth the model’s responses, thereby improving
its generalization across tasks. Additionally, the use of adaptive sampling during training aims to
enhance performance uniformly across all tasks.

The efficacy of our approach will be evaluated using average metrics for each task. Specifically, we
will use accuracy for sentiment analysis and paraphrasing tasks, while employing Pearson correlation
for the similarity task.

2 Literature Review

Regularization techniques, which discourage the model from becoming overly complex and specific
to the training data, are crucial for preventing overfitting. Dropout, introduced in 2014 to prevent
neuron co-dependence, has since become a standard practice in many language models (SOURCE).
Adversarial regularization, as introduced by Miyato et al. Miyato et al. (2018) in 2018, adds noise to
training data to smooth the model’s responses and improve its generalization across computer vision
tasks. This method was later adapted by Jiang et al. Jiang et al. (2020) for specific language tasks,
which we leverage in our project to generalize across multiple tasks.

Multitask training shows promise in enhancing efficiency, robustness, and adaptability in addressing
various linguistic tasks. Similar to our baseline BERT implementation, Bi et al. Bi et al. (2022)
propose multi-task learning, where losses from different tasks are combined. We employ this
approach for multitask fine-tuning, along with round-robin sampling, where each task’s training
data takes turns to prevent one task from dominating the training process. Further, Sun et al.
Sun et al. (2019) explored advanced pretraining and fine-tuning methods to adapt BERT for text
classification; they found that incorporating lexical, syntactic, and semantic information through
continual pretraining, along with specific learning rate adjustments, led to performance enhancements
that we have demonstrated extend to multi-task models.

Yu et al. Yu et al. (2020) highlight a challenge associated with multi-task learning: conflicting
gradient directions from different tasks. To address this issue, they introduce Gradient Surgery, a
technique involving adjusting the gradients of one task by projecting them onto the normal plane of
another task’s gradient. Adaptive priority sampling of databases also presents a viable avenue for
mitigating gradient direction discrepancies.

3 Approach

Figure 1: Illustration of the classifier model f mapping sentence embeddings x to probability vectors
y. f is smooth if x+ δ maps to y′ and nonsmooth if x+ δ maps to y′′.

We utilize a BERT model as the foundation and construct three distinct classifiers on top of it. Each
classifier uses the hidden states of the same BERT and produces predicted output for one of these three
tasks: sentence sentiment classification (SST), paraphrase detection, and semantic textual similarity

2

(STS). Multi-task training is employed to fine-tune the BERT model, where losses from all tasks are
aggregated.

For paraphrase detection and semantic textual similarity (STS), we explore two different model types:

1. Utilizing the MiniBERT architecture with default classifiers that feed two separate sentences
to the BERT and compare output to predict the results.

2. Utilizing BERT from pytorch-transformers with a linear classifier where input sentences
are concatenated as a single long sentence (denoted as long_sentence = Sentence1 +
"SEP" + Sentence2). Mulyar (2022)

The primary focus of our approach revolves around two techniques: adversarial regularization to
overcome overfitting to data, and priority sampling to minimize overfitting to a specific task.

3.1 Adversarial Regularization

Even with training the BERT model for a single-task classifier using dropout, we observe overfitting,
especially when provided limited labeled training data. To mitigate this, we implement a smoothness-
inducing regularization technique, introduced by Jiang et al. (2020), for each task separately.

Figure 1 depicts a smooth classifier model f(x, θ), where x represents the input sentence embeddings,
and θ denotes the model parameters. This classifier is considered smooth concerning x if small
noise/perturbations δ result in negligible changes to the output y.

The adversarial regularizer fine-tunes the model parameters θ to minimize a two-term loss function:

loss(θ) = L(θ) + λsRs(θ) (1)

Here, L(θ) denotes the standard cross-entropy loss function, guiding the classifier to adhere to
labeled data during training, while Rs(θ) represents the smoothness regularization term, ensuring the
smoothness of the classifier f . λs > 0 serves as a tuning parameter to weight this regularization.

The smoothness regularization term Rs(θ) is expressed as:

Rs(θ) =
1

n

n∑
i=1

distance (f(xi + δi, θ), f(xi, θ)) (2)

where i indexes the training samples. The function distance(·) calculates the difference between two
probability vectors (the output of normal input vs perturbed input) such as ||f(xi+δi, θ)−f(xi, θ)||22.

We implemented the classifier ourselves from the Default Project Handout, and we incorporated
the smoothing regularization by copying the SMART algorithm outlined in JIANG SOURCE with
modifications to handle the dropout implemented in the baseline BERT. We also leveraged a smartpy-
torch package from Archinetai (2024) which takes an input embedding and generates an adversarial
embedding with noise which we set at 5%, to get a perturbed state that we implemented in a separate,
perturbation-specific forward pass function in the BERT class. We then pass the concatenation of two
input embedding to the package function for STS and paraphrasing tasks. Although we did not have
the time or compute units to experiment with several different values of λs, we tried a few of the
paper’s suggested weights λs ∈ 0.1, 1, 5, 10, 100 to make sure our modification was being applied at
the scale we imagined.
One thing we noticed is that the baseline dropout was injecting the same/more noise than the adver-
sarial regularization noise, and was diminishing the learning capabilities as the dropout noise did not
have a learnable loss. Thus, we tried disabling it, which yielded slightly better results.

3.2 Priority Sampling

Imagine a situation where one of the task databases contains significantly more samples than the
combined samples of the other tasks, and this task with heavy data is trained last. In such a
scenario, the final training step may substantially degrade the performance of other classifiers. This
phenomenon can be illustrated by observing that the gradient of the final task in the training chain

3

can diverge significantly from the gradient of the earliest task in the training chain. Consequently,
many steps of the last task may deviate significantly from the optimal solution of the earlier tasks.
To mitigate these conditions, we have developed an adaptive round-robin strategy for picking the
batches of samples sent for training.

During each epoch of optimization, we iterate over each task and select a pi number of batches for
each task i. The priority number pi represents the rounded ratio of the training samples for task i
normalized to the number of training samples for tasks with lower sample counts. pi for task i varies
within a range

Ni ≥ pi ≥ 0

Here, Ni is the rounded ratio of the sample size of task i database to the size of the database with the
smallest size.

At the beginning of training, we set pi = Ni for several epochs, and then during training, when the
performance of task i saturates, we gradually decrease pi even to zero. Once the performance metric
of all tasks are saturated we activate adversarial regularization term and set all pi = 1 to mitigate
overfitting .

4 Experiments

4.1 Data

Table 1 describes the datasets used in our experiments. We only used the data provided to us by
CS224n – These datasets encompass five tasks, including four classification tasks and one regression
task.

Table 1: Experiment 2 Dataset Overview

Dataset Description Task Type/Classes Samples

SST-5 Sentiment Analysis Movie review sentiment
classification

Classification/5 12,855

QQP Paraphrase Detection Determining if question
pairs are paraphrases

Classification/2 202,152

STS-B Text Similarity Measuring the similarity be-
tween sentence pairs

Regression/NA 8,628

SST Sentiment Analysis Movie review sentiment
classification

Classification/5 11,855

CFIMDB Sentiment Analysis Sentiment classification of
IMDB movie reviews

Classification/2 2,434

4.2 Evaluation method

We use accuracy to evaluate classification tasks of Table 1. Accuracy would indicate the percentage
of correctly classified out of the total number of instances in the dataset. We use Pearson correlation
to evaluate the regression task which is Text Similarity. This metric quantifies the linear relationship
between the true values and the predicted values.

4.3 Experimental Details

All experiments were conducted with a learning rate of 1 × 10−5 and a hidden-layer dropout
probability of 0.3. In our SMART implementation Jiang et al. (2020), specific hyperparameter values
were set as follows: λ = 5, ϵ = 1× 10−5, σ = 1× 10−5, β = 0.995, µ = 1, and η = 1× 10−3.

During training, each iteration processed
∑

batch size × pi samples of data sets, where pi represents
the priority of each task. We used a batch size of 8 for SMART training and 16 for baseline training.
Each epoch consisted of 1000 batches from all datasets. The value of pi varied from 0 to 10 for
paraphrase classification and set to 1 for other tasks.

4

We provide the details of five configurations2. For training our baseline, we assigns equal priority
(Π = 1) to each task during training, resulting in an equal number of samples collected for each task.
We also use type 1 model. In contrast, the second model utilizes priority sampling, with one batch of
SST, one batch of STC, and eight batches of paraphrase results collected per iteration.

The third model incorporates adversarial regularization (λ = 5) on top of the training procedure of
the second model, with an equal number of samples collected for each task during training.

The forth and fifth model use type 2 model.

4.4 Results

Table 2 presents the evaluation results for three models developed in Experiment 2.

Table 2: Model Evaluation for Experiment 2

Method Overall SST Accuracy Paraphrase Accuracy STS Correlation

BaseLine (¶i = 1) 0.510 0.510 0.446 0.395
Type 1, Priority Sampling of (1,8,1) 0.655 0.512 0.746 0.414
Type 1, Priority Sampling + Adversarial 0.672 0.528 0.752 0.473
Type 2, Priority Sampling of (1,8,1) 0.742 0.524 0.789 0.742
Type 2, Priority Sampling + Adversarial 0.753 0.524 0.819 0.841

As of writing this report, our best-performing model achieved a rank of 55 on the dev set leaderboard.

Our results demonstrate a 2 to 10 percent improvement in accuracy when adversarial regularization is
applied. This finding is consistent with the improvement reported in Jiang et al. (2020). However, it
contrasts with our initial expectations, as we did not anticipate such a minor improvement in accuracy
from adversarial regularization.

Our results show significant improvement for STS and Paraphrase task using model2.

5 Analysis

Our results indicate a discrepancy in Pearson correlation for Model Type 1 and Model Type2. To
gain insight into this issue, we compared the accuracy and correlation separately calculated for the
training dataset and development dataset 3.

The results shows accuracy and correlation for the training dataset are close to 1 for STS Correlation
Sentiment Accuracy while the same metrics for development set are around 0.5. This discrepancy
suggests significant over fitting. To further investigate the overfitting problem

Table 3: Model Evaluation Results

Task Sentiment Accuracy Paraphrase Accuracy STS Correlation
Development Dataset 0.504 0.746 0.485
Training Dataset 1.000 0.770 0.931
Test Dataset 0.528 0.752 0.827

To address this overfitting concern, we implemented several strategies. Initially, we narrowed down
the tasks to focus solely on the STS task and experimented with various regression parameters,
including ϵ = 1e− 6 and λ = 0.01, 5, 10, 50. However, none of these mitigated the overfitting issue.

Furthermore, we attempted to improve the STS accuracy by transitioning from the FCos (Feature-
wise Cosine Similarity) method to Cross Attention. Regrettably, this approach failed to enhance
STS accuracy, and the overfitting problem persisted. Our findings suggest that although SMART
regularization marginally improved metrics by 2 to 5 percent, it was insufficient to alleviate overfitting.
However, We found model type 2 results are significantly bettr than model1.

5

Additionally, we scrutinized the results reported by Jiang et al. Jiang et al. (2020) for the STS
task. Interestingly, their experiments with SMART regularization demonstrated less than a 1 percent
improvement in correlation for the STS tasks they evaluated.

6 Conclusion

In this study, we delved into the efficacy of employing adversarial regularization and adaptive
sampling techniques to bolster the performance of a multitask BERT model across a spectrum of
natural language processing (NLP) tasks. Through the integration of these techniques, our aim was to
mitigate overfitting and enhance the model’s generalization capacities across diverse tasks.

Our experimental findings yielded promising outcomes. Adversarial regularization resulted in a
notable enhancement of 2 to 5 percent in accuracy across tasks, aligning with prior research as noted
in Jiang et al. (2020). However, we encountered challenges related to an increase in the correlation
value within the development dataset for the Semantic Textual Similarity (STS) task and Models of
Type1.

To address the persistent overfitting issue On Model 1 types, we employed various strategies, in-
cluding modifying the STS classifier and conducting parameter experiments. Despite these efforts,
overfitting persisted, underscoring the necessity for further exploration into more robust regularization
techniques.

Looking ahead, we advocate for deeper investigation into the overfitting phenomenon. Furthermore,
exploring the impact of multitask learning architectures on model performance and generalization
across a wide array of linguistic tasks could yield valuable insights for future research pursuits.

Contributions: Chloe and Mohsen made equal contributions to various aspects of this project,
including coding, analyzing results, paying for Colab credits (lol), and conducting experiments.

7 Appendix

We conducted another set of experiment evaluating BERT and regularized BERT models for sentiment
analysis. For this experiment we use SST dataset and CFIMDB dataset. The training is done only
using STS task dataset.

Table 4: Model Evaluaion for Experiment 2

Task δ = 0%, λ = 0 δ = 5%, λ = 1

SST Accuracy 0.271 0.311
Paraphrase Accuracy 0.403 0.405
STS Correlation 0.020 0.029
Overall 0.395 0.409

References
Archinetai. 2024. Smart-PyTorch: A Comprehensive PyTorch Library for Efficient and Intelligent

Deep Learning. https: // github. com/ archinetai/ smart-pytorch . Accessed on: March
15, 2024.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task
learning over BERT for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2663–2669.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics.

6

https://github.com/archinetai/smart-pytorch
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. 2018. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. IEEE transactions
on pattern analysis and machine intelligence, 41(8):1979–1993.

Andriy Mulyar. 2022. Semantic Text Similarity Repository. https: // github. com/
AndriyMulyar/ semantic-text-similarity .

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune BERT for text classi-
fication? In Chinese Computational Linguistics: 18th China National Conference, CCL 2019,
Kunming, China, October 18–20, 2019, Proceedings 18, pages 194–206.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836.

7

https://github.com/AndriyMulyar/semantic-text-similarity
https://github.com/AndriyMulyar/semantic-text-similarity

	Introduction
	Literature Review
	Approach
	Adversarial Regularization
	Priority Sampling

	Experiments
	Data
	Evaluation method
	Experimental Details
	Results

	Analysis
	Conclusion
	Appendix

