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Abstract

Bidirectional Encoder Representations from Transformers (BERT) has revolution-
ized the field of natural language processing (NLP). Our project aims to com-
prehensively study the BERT model through hands-on implementation and delve
into the multitask fine-tuning technique. We successfully implemented core com-
ponents of BERT, encompassing the model architecture and optimizer, and pro-
ceeded to train classifiers for three distinct downstream tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity. Through a meticulously de-
signed series of experiments, we uncovered insights into the impact of various
aspects and components of the training setup on the output performance. In par-
ticular, we verified the fundamental assumption that fine-tuning improves model
performance. We compared and evaluated different batching strategies in multi-
task fine-tuning. While multitask fine-tuning notably enhances training efficiency,
our findings indicate that it does not consistently improve results across all tasks.
We quantitatively described the relationship between model performance, train-
ing duration, and the number of simultaneously fine-tuned tasks, concluding that
single-task fine-tuning maximizes accuracy or scores for each task, while fine-
tuning more tasks together reduces the overall training time. Additionally, we
identified gradient surgery as a viable solution for mitigating gradient conflict
issues in multitask learning, observing its ability to either preserve or enhance
training outcomes. Our latest test leaderboard submission achieves SST accuracy
0.513, paraphrase accuracy 0.797, STS correlation score 0.332, and an overall
score of 0.659.

1 Introduction

In traditional machine learning approaches, models are typically trained at a singular task, thereby
neglecting potentially beneficial insights from the training signals of akin tasks (Ruder, 2017). Multi-
task learning (MTL), a concept within the machine learning domain, seeks to harness the valuable
information shared among multiple correlated tasks, thereby enhancing the generalization capabil-
ities across all tasks (Caruana, 1997). This is often implemented in deep neural networks through
the sharing of certain hidden layers across different tasks, while maintaining distinct task-specific
output layers. Advantages of MTL include enhanced data efficiency, minimized overfitting, and
accelerated learning, as it utilizes supplementary information from related tasks (Crawshaw, 2020).

Despite its potential, multi-task learning is fraught with its own set of challenges. The heterogene-
ity of task objectives, data distributions, and learning rates can lead to task interference, where the
model’s performance on one task can detrimentally affect its performance on another. Moreover,
the absence of a standardized method for balancing the influence of each task and adjusting their
relative importance complicates the training process further. These issues underscore the complex-
ity of designing effective MTL systems that can harmonize the demands of multiple tasks without
compromising their individual performances.
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In recent years, BERT (Birectional Encoder Representations from Transformers)Devlin et al. (2019)
has become a well-adapted selection for NLP tasks, since as a pre-trained model, it provides a rich,
contextualized representation of language that serves as a powerful starting point for a variety of
NLP tasks. When integrated into an MTL framework, BERT has the potential to address some of
the intrinsic challenges of MTL.

To further understand the mechanism behind the BERT-based multi-task model, we designed and
conducted several sets of experiments.

2 Related Work

For the multi-task fine-tuning project based on BERT, the following is a list of related works catego-
rized into several sub-groups.

2.1 Hard Parameter Sharing vs Soft Parameter Sharing

Most multi-task learning methods fall into two main catogeries: ’hard parameter sharing’ and ’soft
parameter sharing’. In hard parameter sharing, all tasks utilize the same hidden layers while em-
ploying distinct output layers tailored to each task. On the other hand, soft parameter sharing allows
each task to have its own separate model, while the similarity among the models’ parameters is pro-
moted through regularization, encouraging the parameters across different tasks to be alike (Duong
et al. (2015) use the L2 distance, Yang and Hospedales (2017) use the trace norm). As for hard
parameter sharing, one approach is Stickland and Murray (2019), which is a compact multi-head
attention layer that operates alongside the conventional BERT layers and is tailored to individual
tasks. For our project, we use the hard parameter sharing and we didn’t save separate models for
different tasks.

2.2 Batching & Sampling

Determining the best way to group and cycle through samples from various datasets in multi-task
learning represents a important role in multi-task learning problem. Round-robin sampling is the
traditional way to sample the data, through which the data will sampled in circle order. However,
the small datasets will be overfitted as the samples from smaller dataset will repeat for several
times. There’s a noval method for sample batching from Stickland and Murray (2019), through
which the samples from different tasks will be sampled proportionally to the dataset sizes and then
de-emphasize training set size as training proceeds.

2.3 Optimization in Multi-task Learning

Other studies concentrate on tackling the challenges associated with optimization in multi-task learn-
ing ((Hessel et al., 2019), (Kendall et al., 2018)). Some studies address optimization issues by ad-
justing the scale of task-specific gradients (Chen et al., 2018). Multiple approaches to continual
learning have studied how to prevent gradient updates from adversely affecting previously-learned
tasks through various forms of gradient projection ((Chaudhry et al., 2019), (Lopez-Paz and Ranzato,
2022)). Yu et al. (2020) presents a method that is independent of the model architecture and sup-
ports positive transfer during simultaneous learning of multiple tasks. It avoids the need for solving
a quadratic programming (Lopez-Paz and Ranzato, 2022) problem and applies an iterative process
for projecting each task’s gradients instead of merely averaging or projecting only the current task’s
gradient.

3 Approach

3.1 BERT Model and Classifiers

Based on the skeleton code provided in the default final project handout, we first complete the
implementation of the core parts of BERT model, including the embedding layer, self-attention layer,
and an efficient version of Adam optimizer (Kingma and Ba, 2017), as well as a sentiment classifier
which passes the BERT output into a simple linear layer with dropout to generate sentiment scores.
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After verifying the implementation, we add the classifier heads for two other downstream tasks:
paraphrase detection and semantic textual similarity. Cross entropy (CE) loss is used for training the
sentiment classifier since it is a classification problem, mean squared error (MSE) loss for the other
two since they are regression problems. We train the classifier on SST and CFIMDB datasets, with
and without fine-tuning, to verify our implementation. We train for each task separately, with and
without fine-tuning, to produce the baseline result.

3.2 Multitask Fine-tuning

Instead of training for each task separately, we let multiple tasks share the same BERT model, com-
bine their losses, and do backward propagation for all tasks in one step. This approach is intended
to make the model more versatile while using fewer parameters (Stickland and Murray, 2019). We
experiment with different configurations, including the batching strategy and the numbers of tasks
fine-tuned together, to better understand how this method affect training performance.

3.3 Gradient Surgery

Despite the expected efficiency improvement, optimization in multitask fine-tuning is known to be
challenging because different tasks can result in conflicting gradients. To overcome this issue, we
apply the gradient surgery technique projecting conflicting gradients (PCGrad) proposed by (Yu
et al., 2020): before each update step, we iterate through the gradients from each task and project it
to the normal plane of any gradient from other tasks that it conflicts with, and sum up the projections
to get the final value of the gradient. The core idea of projecting conflicting gradients is given by
Equation 1, and the full algorithm is shown in 1. We integrate an existing implementation of PCGrad
(Tseng, 2020) into our code and run experiments to compare training results with and without this
remedy.

gi = gi −
gi · gj
||gj ||2

· gj (1)

Algorithm 1 PCGrad Update Rule
Require: Model parameters θ, task minibatch B = {Tk}
1: gk ← ∇θLk(θ) ∀k
2: gPC

k ← gk ∀k
3: for Ti ∈ B do
4: for Tj uniformly ∼ B \ Ti in random order do
5: if gPC

i · gj < 0 then
6: // Subtract the projection of gPC

i onto gj

7: Set gPC
i = gPC

i − gPC
i ·gj
∥gj∥2 gj

8: return update ∆θ = gPC =
∑

i g
PC
i

3.4 Training

We use a NVIDIA RTX A6000 GPU with 48GB GPU RAM for all the training and evaluation.
To limit the number of variables in experiments, for each run, we set the learning rate to 1e-3 for
pretrain and 1e-5 for fine-tune, use batch size 32, and run 10 epochs.

3.5 Dataset Batching

While fine-tuning multiple tasks, the datasets for different tasks can vary in size, so it is usually
impossible to simultaneously guarantee the same number of batches and the same number of samples
from each dataset per batch. We have experimented with a few methods to handle dataset batching:

Method 1. Fix number of batches, group data proportionally, and weigh loss. Initially, we try
to make the ratio of samples from each dataset close to the ratio of the original dataset sizes. To
do so, we divide the size of the largest dataset with the batch_size specified to get num_batches,
and then divide the size of each dataset with num_batches to get per_task_batch_size. All the
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division results are rounded up to prevent zero batch sizes or number of batches. During each step,
we group the batch from each dataset and compute the loss for each task, weighed by the inverse of
the ratio of the corresponding data in the batch, as shown in Equation 2.

lossT =
lossT ·

∑
t ̸=T per_task_batch_sizet

per_task_batch_sizeT

(2)

The intention of this processing step is to eliminate the impact of difference in dataset sizes on the
amount of update for each task.

The issue with this method is that when there is a significant disparity in dataset sizes, like in our case
(about 20x more training examples for paraphrase detection than for other two tasks), the effective
batch size of smaller datasets can be too small, resulting in noisy updates. Through some preliminary
testing, we found that the result was indeed not ideal and decided not to use this method.

Method 2. Fix batch size, finish largest dataset, and cycle others. We apply batch_size to each
dataset to get per-task batches and assemble them into a super batch, whose size is (batch_size×
num_tasks). After smaller datasets are exhausted, their batches are reused and grouped with unused
batches of larger datasets until the largest dataset is used up.

Method 3. Fix batch size, finish smallest dataset, and discard others. Like in Method 2, we put
equally-sized batches of each dataset into a super batch. However, we end the iteration after the
smallest dataset is used up.

In Method 2 and 3, each dataset is randomly shuffled in every epoch before batching to make each
super batch unique. It also makes it possible for each example in the larger datasets to be utilized,
although not all of them are guaranteed to be used.

By intuition, Method 2 makes use of all the data available, but it might cause over-fitting since
smaller datasets are used repeatedly. Method 3, on the other hand, uses each example at most once
in each epoch, so it might be less likely to over-fit. However, it may discard a large chunk of the
larger datasets and result in insufficient training for certain tasks. We have performed an experiment
(described below) to compare the two methods.

4 Experiments

4.1 Data

We used the following 4 datasets throughout the project.

• Stanford Sentiment Treebank (SST): This dataset contains unique phrases labeled with 5
levels of positiveness, i.e. an integer score from 1 to 5 (Socher et al., 2013), split into train
set (8,544 examples), dev set (1,101 examples), and test set (2,209 examples). We use it to
train the model for the sentiment analysis task.

• CFIMDB: This dataset contains highly polar movie reviews labeled as positive (1) or neg-
ative (0), split into train set (1,707 examples), dev set (245 examples), and test set (488
examples). We use it to train the model for the sentiment analysis task while developing
the single task classifier. Note that in later experiments, we only used the SST dataset.

• Quora Question Pair: This dataset contains unique question pairs, split into train set
(141,506 examples), dev set (20,215 examples), and test set (40,431 examples). The ques-
tions in each example are either considered duplicates (labeled 1) or not (labeled 0). We
use it to train the model for the paraphrase detection task.

• SemEval Semantic Textual Similarity (STS) Benchmark: This dataset contains unique
sentence pairs, split into train set (6,041 examples), dev set (864 examples), and test set
(1,726 examples). Each example comes with a similarity score from 0 (not at all related) to
5 (same meaning). We use it to train the model for the semantic similarity scoring task.

4.2 Evaluation method

For sentiment analysis and paraphrase detection, we evaluate the performance of the model on
the dev dataset based on accuracy, i.e. percentage of correct predictions.
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For semantic similarity scoring, we evaluate the model performance with the Pearson product-
moment correlation coefficient (PCC) between predicted similarity scores and ground truth. Here is
the formula of PCC:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2
(3)

where:

• n is the number of data points,
• Xi and Yi are the individual data points for variables X and Y , respectively,
• X̄ and Ȳ are the means of variables X and Y , respectively.

For single-task configurations, we run the checkpoint that achieves the best dev accuracy out of all
the epochs on the evaluation dataset and report the results. For multitask configurations, we sum up
the accuracy or score of each task and use the checkpoint with the highest sum.

4.3 Experimental details

We have designed and performed 4 experiments, each focused on the impact of a specific variable
in the training setup. Note that some of the results are shared between experiments for comparison
in different aspects.

Exp. 1: Pretrain vs. Fine-tune. We train each downstream task twice, once using pretrained
weights for the BERT layer (pretrain mode), and once fine-tuning the BERT layer (fine-tune mode).
For each task, we use all the training data available.

Exp. 2: Batching Multiple Datasets. We perform multitask fine-tuning on all three tasks twice,
using Method 2 and Method 3 from Section 4.4 for dataset batching, respectively.

Exp. 3: Number of Tasks Fine-tuned Together. We compare fine-tuning single tasks, fine-tuning
each pair of tasks, and fine-tuning all three tasks together. We always use Method 3 from Section
4.4 (i.e. exhaust smallest batch and discard the rest) for dataset batching in this experiment. Note, to
keep the amount of data used for each task per epoch as a controlled variable, we use the minimum
number of batches computed from the smallest dataset for all other datasets, even in single-task
training. For example, with batch size 32, we get 189 batches from the smallest dataset, STS, so we
use 189 batches of size 32 for paraphrase detection and SST in each run as well.

Additionally, we keep track of the average duration per epoch in each training configuration.

Exp. 4: Gradient Surgery. We run multitask fine-tuning with and without gradient surgery for
each pair of tasks. Again, we use Method 3 from Section 4.4 for dataset batching.

4.4 Results

According to Table 1, each single-task model has significantly better performance with fine-tuning
compared to using the pre-trained model directly.

SST Acc. Paraphrase Acc. STS Corr.
Pretrain 0.396 0.561 0.271

Fine-tune 0.520 0.793 0.396

Table 1: Experiment Result, Pretrain vs. Fine-tune

According to Table 2, switching from Method 2 to Method 3 marginally improved the results of
SST and STS, which have smaller datasets, but significantly reduced the accuracy of paraphrase
detection, which has a much larger dataset.

According to Table 3 and Figure 1, adding the number of the tasks in multitask fine-tuning consis-
tently reduces the overall training time, but its effect on model performance in terms of accuracy
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SST Acc. Paraphrase Acc. STS Corr.
Method 2 (finish largest dataset) 0.504 0.778 0.366

Method 3 (finish smallest dataset) 0.510 0.662 0.379

Table 2: Experiment Result, Batching Multiple Datasets

and score varies by task. For SST, the best accuracy is seen in single-task fine-tuning, reduced ac-
curacy when fine-tuned with another task, and the worst accuracy when fine-tuned with both other
tasks. The same tendency is repeated in paraphrase detection, which performs best when fine-tuned
independently and goes worse as the number of tasks increases. Notably, adding the number of tasks
has a more substantial impact on paraphrase detection than on SST. By contrast, STS follows the
opposite pattern, where the best performance is achieved in multitask fine-tuning.

Fine-tuned task(s) SST Acc. Paraphrase Acc. STS Corr.
SST 0.520 - -

Paraphrase - 0.749 -
STS - - 0.364

SST + STS 0.489 - 0.379
SST + Paraphrase 0.501 0.714 -
STS + Paraphrase - 0.688 0.364

SST + Paraphrase + STS 0.510 0.662 0.379

Table 3: Experiment Result, Number of Tasks Fine-tuned Together. Results for task(s) not used in
each run are omitted.

Figure 1: Experiment Result, Number of Tasks Fine-tuned Together. Training duration and improve-
ment under each configuration.

According to Table 4, the performance of paraphrase detection is improved when gradient surgery
is applied during the multitask fine-tuning with another task. There is a slight drop in SST accuracy
and STS correlation score with gradient surgery, but the change is minimal. Overall, using gradient
surgery results in equal or better performance in the fine-tuned models.

Based on our experimental results, among all the methods and configurations tested, single-task fine-
tuning achieves the best accuracy or Pearson correlation scores for each individual task. Therefore,
we used the individually fine-tuned model of each task to generate test set results for the learderboard.
There result is shown in 5.

5 Analysis

The experimental results provide meaningful insights into the behavior of our BERT model and task
heads under different training methods and configurations.
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SST Acc. Paraphrase Acc. STS Corr.
SST + STS 0.512 - 0.379

SST + STS (w/ GS) 0.510 - 0.374
SST + Paraphrase 0.520 0.714 -

SST + Paraphrase (w/ GS) 0.519 0.728 -
STS + Paraphrase - 0.688 0.364

STS + Paraphrase (w/ GS) - 0.707 0.362

Table 4: Experiment Result, Gradient Surgery

SST Acc. Paraphrase Acc. STS Corr. Overall Score
0.513 0.797 0.332 0.659

Table 5: Leaderboard submission results

Exp. 1 shows that fine-tuning can largely improve model performance. This is expected because the
BERT encoding from the pre-trained weights may not work ideally for all the tasks. By populating
the gradient to the base model (BERT) and updating its weights, we essentially extend the learning
from only the decoder to the encoder as well, making the encoding better adapted to the correspond-
ing task. However, since fine-tuning requires more parameter updates, the training consumes more
resources.

Exp. 2 illustrates the inherent trade-off between using all the available data and avoid repeating
the same data. Tasks with larger datasets benefit from Method 2 because it can fully utilize all its
data with minimal repetition. Meanwhile, tasks with smaller datasets are trained on the same data
repeatedly, which might cause over-fitting and therefore worse performance. On the other hand,
Method 3 reduces over-fitting for tasks with less data, but reduces the training data for other tasks.

Exp. 3 demonstrates that multitask fine-tuning effectively reduces training time, which matches
our expectation because different tasks essentially "share" the gradient computations during the
backward propagation, which is a time consuming step if executed separately. However, this tech-
nique does not uniformly improve training results. While it positively affects the STS correlation
score, this improvement may be attributed to the enhanced BERT encoding facilitated by training
with more diverse datasets. Conversely, the observed decreases in SST and paraphrase detection
accuracy are likely due to conflicting gradients. These gradients, stemming from different task ob-
jectives, may impede learning by pulling the model parameters in opposite directions. Experiment
4 bolsters this interpretation by showing the improvements after applying gradient surgery.

Exp. 4 suggests that PCGrad makes the multitask fine-tuned model achieve the same or better
performance. The difference between with and without gradient surgery is insignificant for SST and
STS, which is possibly because they do not have an issue with conflicting gradients to begin with.
Paraphrase accuracy has a more noticeable change likely due to its gradient conflicts with other
tasks, e.g. two highly similar phrases may not be paraphrase of each other, vice versa.

After the extensive exploration, we determined that single-task fine-tuning stands out as the preferred
method for maximizing accuracy or scores for individual tasks. This verdict is justifiable, given the
absence of task interference when utilizing dedicated BERT layers tailored to each specific task.
However, it is important to note that multitask fine-tuning offers valuable advantages, particularly in
its ability to deliver comparable or superior performance for tasks such as SST and STS, all while
significantly reducing training time. Furthermore, multitask fine-tuning poses a challenge in multi-
dataset batching, which we have not fully addressed. The drop in paraphrase detection performance
might as well to the reduced training data per epoch rather than multitask learning itself.

6 Conclusion

In conclusion, our project provided a comprehensive examination of the BERT model, focusing on
implementing the key modules and exploring the multitask fine-tuning technique. We gained valu-
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able insights into the nuances of training setups and their impact on performance. Our experiments
confirmed the effectiveness of fine-tuning in enhancing training performance and shed light on the
varying outcomes of multitask fine-tuning, highlighting its potential to improve training efficiency
without consistently providing the optimal results. Our findings also demonstrated the efficacy of
gradient surgery in mitigating gradient conflict issues for some, but not all tasks.

A notable limitation of our study lies in the insufficient exploration of multi-dataset batching in
multitask learning, which may introduce additional variables and end up skewing our results. In
order to achieve a balanced representation of each dataset within each super batch presents a trade-
off between ensuring that each task encounters all its associated data and avoiding the repetition of
data within each epoch. We acknowledge that our experiments did not adequately address this issue,
which may be worth attention in future work.

Additionally, our project primarily centered on the characteristics of multitask fine-tuning rather than
refining the outcomes in the final submission. Future work could explore various methods, including
layer augmentation or modification, hyperparameter tuning, and ensemble learning techniques, to
enhance the ultimate performance of the model.
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