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Abstract

To date, archaeologists have unearthed more than 100,000 Sumerian texts,
a corpus that reflects both the apparent genesis of writing itself, as well
as a rich written tradition spanning three millennia. Reading these texts,
however, requires years of specialized training in Assyriology. Each glyph
in the language’s cuneiform script can have dozens of different readings
depending on the neighboring context, the genre, and the period. The
laborious task of resolving each glyph into a particular reading is known as
transliteration, wherein Assyriologists use a conventional system to render
readings phonetically in the Latin alphabet. Transliteration is the most
difficult and time-consuming step in translating Sumerian.
In this paper, we introduce GILgaMeSH, the first neural machine translit-
eration pipeline for Sumerian. We demonstrate that—despite Sumerian’s
status as a low-resource language and language isolate—large pretrained
multilingual language models can be adapted to perform the sequence-to-
sequence task of transliterating a sequence of unicode cuneiform glyphs with
remarkable accuracy. With such an abundance of extant texts and so few
specialists capable of reading them, our work represents a significant step
towards making a complete translation of the most ancient corpus available
in all modern languages.

1 Key information to include
• Mentor: Soumya Chatterjee

2 Introduction

Sumerian is the oldest attested written language. First written in southern Mesopotamia
(modern-day Iraq south of Baghdad) as early as 2900 BCE, Sumerian continued to be used,
depending on the time and place, for administration, liturgy, or scholarship until around
100 CE. It then went extinct. However, because texts were written on clay—unlike later
biodegradable substrates such as papyri—they survived in great quantity (Finkel and Taylor,
2015). Rediscovered in modernity, the struggle to completely decipher the language con-
tinues on to this day, hindered by Sumerian’s status as a language isolate, the fragmented
condition of most texts, and by the indistinguishable nature of genuine yet underrepresented
language features, scribal mistakes, and dialectical or orthographic variation.
Mesopotamian scribes formed glyphs (i.e. signs) by composing stylus impressions on wet clay
tablets. In context, a glyph can function as a logogram (word sign), phonogram (phonetic
sign), or determinative (unvoiced semantic classifier). Most glyphs have many readings
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across these categories of no necessary semantic relation: e.g. 𒂊 can represent the verb “to
speak”, the ergative marker on a noun, pronominal agreement on a verb, or just the syllable
e. We cross-analyzed our dataset with a Sumerian dictionary and found that the average
number of different readings for a glyph, weighted by glyphs’ frequency, is 29.22.
Therefore, to read a tablet you must first painstakingly sort through the myriad of possi-
bilities for every single glyph given those that surround it. Assyriologists do this through
the process of transliteration. Using a conventional system, they render selected readings in
the Latin alphabet in a manner that reflects best-guess phonetics. Resulting homophones
are distinguished through subscripts: e.g. e and e2 are homophonic but otherwise unrelated
readings semantically. While each glyph can have many possible readings, each reading is
backed by only one glyph. Further minimizing ambiguity in the transliteration, nominal
or verbal roots and their affixes are joined with hyphens. In a lecture by Professor Gina
Konstantopoulos, she stated that “once you have a transliteration, you’re about 80% of the
way to a translation.”
Transformer-based deep learning architectures have had demonstrated great success in
language modeling when trained on either a masked language modeling (MLM) task—
predicting a masked word given the surrounding words—or a causal language modeling
(CLM) task—predicting the next word given the preceding words. However, this approach
typically requires a significant number of examples in a language. But by training mod-
els on a multilingual corpus, the model can learn cross-lingual representations that can be
transferred to a new language.
Our project demonstrates remarkable success in adapting large multilingual models to model
and transliterate Sumerian, despite the highly fragmented nature of the extant texts and
the language being both low-resource and an isolate. By first fine-tuning an XLM-R model
on a masking task, and then connecting it to another XLM-R model in an encoder-decoder
architecture, we were able to achieve an average BLEU score of 90.07 on unseen test data.
In comparison, generating transliterations by sampling from the glyphs’ possible readings
yields an average BLEU score of 7.2.

3 Related Work

3.1 Language Modeling with Transformers

In the traditional approach to language modeling, practitioners applied methods such as
word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) to generate static
embeddings for each word. They would then pass these embeddings as the inputs to an
RNN-based architecture, such as a GRU or LSTM, to learn how these words in sequence
related to the downstream task, e.g. document classification.
The advent of transformers (Vaswani et al., 2017) marked a turning point for natural lan-
guage processing, with models exhibiting unprecedented abilities in understanding and gener-
ating text. BERT (Devlin et al., 2019) demonstrated the efficacy of combining transformers
and a bidirectional training strategy. RoBERTa (Liu et al., 2019) improved performance by
removing the next sentence prediction objective and training on a larger corpus.

3.2 Multilingual Models and Sequence-to-Sequence

While BERT and RoBERTa were theoretically language-agnostic, they were trained and
evaluated as monolingual models. XLM (Lample and Conneau, 2019) showed that multi-
lingual models can effectively learn cross-lingual representations. XLM-R (Conneau et al.,
2020) pushed the envelope further, training on a corpus of 100 languages.
A shortcoming of the aforementioned models is that they are “encoder-only,” meaning that
they can produce meaningful representations of a sequence but are not designed to produce
an output sequence in the same or a different language. The earlier work, however, of
Sutskever et al. (2014) showed that encoder models can be paired with a decoder to perform
these sequence-to-sequence tasks.
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3.3 Low-resource NMT and Sumerian

Languages such as English have immense corpora due to their ubiquity on the internet.
But other languages—both ancient and modern—have much scarcer resources with which
to work. A promise of multilingual models is that the cross-lingual understanding can be
leveraged to fine-tune models to work with languages that do not have sufficient resources
on which to train one from scratch.
Li et al. (2023) shows that successive rounds of zero-shot translation and back-translation
can be used to generate synthetic parallel examples between low-resource languages and
English. Finally, Bansal et al. (2021) is the only other research effort on the Sumerian
language. They show that simpler models outperform deeper models on analytical tasks
like POS tagging and NER.

4 Approach

Although Sumerian is a language isolate, it shares grammatical features with other modern
languages: like Basque, it has ergative–absolute alignment; like Turkish and Japanese, it is
agglutinative; and like Korean, it is SOV (Michalowski, 2004). Therefore, the key to our
approach is to leverage XLM-R—which was pretrained on all of these languages—as both
the encoder and decoder in an encoder-decoder model. We do so in three steps.

4.1 Encoder Fine-Tuning

We began by fine-tuning a pretrained XLM-R encoder on the unicode cuneiform glyphs using
a masked language modeling (MLM) task. XLM-R’s tokenizer is based upon SentencePiece
(Kudo and Richardson, 2018). We found that because the unicode cuneiform glyphs were
not in the vocabulary, using the tokenizer led to a sequence of cuneiform glyphs being treated
as a single token, rather than each glyph being treated as its own token. To account for
this, we iterated over the data and added each unique glyph to the vocabulary, a total of
505 new items.
An initial aim with this step was to test whether XLM-R could be adapted to learn rep-
resentations for the new vocabulary and the structure of the language independent of the
downstream sequence-to-sequence task.

4.2 Encoder-Decoder Fine-Tuning w/ Frozen Encoder Weights

Once the first step yielded a model capable of learning effective internal representations for
the unicode cuneiform glyphs, we then integrated the model as the encoder in an encoder–
decoder model. For the decoder, we again used an XLM-R model, but this time one trained
on a causal language modeling (CLM) task capable of autoregressive generation. We per-
formed an initial round of fine-tuning with the encoder weights frozen so that the decoder
could update its weights to better align with the relationship between the encodings pro-
duced by the model in the first step and the desired output.

4.3 Encoder-Decoder Fine-Tuning w/ Unfrozen Encoder Weights

Because the encoder was trained to learn the best encodings for the MLM task, the decoder
has limited ability to translate these into the desired output. The previous step shows large
initial gains that quickly plateau. Once this occurred, we unfroze the encoder weights so
that the model could learn the most effective way to encode and then decode the input
unicode sequence to produce the transliteration sequence.
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5 Experiments

5.1 Data

Our dataset was derived from the Electronic Pennsylvania Sumerian Dictionary (ePSD2)1,
which provides metadata and transliterations for 84,098 texts via JSON files. These translit-
erations were produced over decades of changing conventions and evolving knowledge of
Sumerian vocabulary and grammar. After significant preprocessing, we were able to stan-
dardize the formatting and minimize editorializing about glyphs that were broken away, left
out, or erroneously included.
We added four special tokens to maintain structural information about the tablet:

• <SURFACE> – The start of a surface. While most texts only have writing on a
single surface, some have writing on multiple surfaces.

• <MISSING_LINES> – An unknown number of missing lines. This usually means
that the upper and/or lower portion of a text is broken away.

• <MISSING> – An unknown number of missing glyphs.

• <NEWLINE> – Line break. These are important to retain because it is extremely
rare that morphological glyphs run over to a subsequent line.

With the transliterations in shape, we worked backwards to construct the unicode glyph
sequences. Table 1 provides an example of the input and target sequences.
We have made this dataset available on Hugging Face2 to be utilized in subsequent work.
We then split the data into train, validation, and test sets using a 90%/5%/5% split. As
both an artifact of what was produced and what sites have been archaeologically excavated,
there is a considerable imbalance in the historical periods represented in the corpus. To
ensure that we were training, testing, and validating evenly on how the language was used
throughout time, we stratified the splits by period. Table 2 shows the number of examples
in each. Because the genres of texts produced at excavated sites correlates strongly with
period, stratifying by period also provides a similar distribution of genre (Table 3).
Finally, to ensure that the splits remained consistent over the models and configurations, we
included this split as part of the Hugging Face dataset, uploaded before any model training
occurred.

Glyphs <SURFACE>𒀭𒂗𒆤
(Inputs) <NEWLINE>𒈗𒆳𒆳𒊏

<NEWLINE>𒀊𒁀𒀭𒀭𒌷𒉈𒆤
<NEWLINE>𒅗𒂵𒈾𒉌𒋫
...

Transliteration <SURFACE>d-en-lil2
(Targets) <NEWLINE>lugal kur-kur-ra

<NEWLINE>ab-ba dingir-dingir-re2-ne-ke4
<NEWLINE>inim gi-na-ni-ta
...

Table 1: Example (ca. 2600–2300 BCE)

1https://oracc.museum.upenn.edu/epsd2/json
2https://huggingface.co/datasets/colesimmons/sux
3https://oracc.museum.upenn.edu/epsd2/about/articles/index.html
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Period Dates3 Train Val Test
Ur III ca. 2100–2000 BCE 72,236 4,014 4,014
Old Akkadian ca. 2300–2200 BCE 5,010 278 278
Early Dynastic IIIb ca. 2600–2300 BCE 3,515 195 195
Old Babylonian ca. 2000–1600 BCE 1,536 86 85
Lagash II ca. 2200–2100 BCE 815 45 45
Early Dynastic IIIa ca. 2800–2600 BCE 759 42 42
Unknown 159 9 9
Neo-Babylonian ca. 625–539 BCE 26 2 2
Neo-Assyrian ca. 900–612 BCE 25 1 1
Ebla ca. 2500–2250 BCE 10 1 1
Middle Babylonian ca. 1350–1000 BCE 7 0 1
Total 84,098 4,673 4,673

Table 2: Texts by Period

Genre Train Val Test
Administrative 78,449 4,373 4,355
Royal Inscription 2,762 138 149
Literary 1,131 63 67
Letter 733 35 43
Legal 555 31 35
Unknown 338 23 18
Lexical 69 4 1
Liturgy 37 5 2
Royal/Monumental 9 0 1
Mathematical 7 0 1
Scientific 3 0 1
Ritual 2 0 0
Hymn-Prayer 1 0 0
Lexical; School 1 0 0
Astronomical 1 0 0
Total 84,098 4,673 4,673

Table 3: Texts by Genre

5.2 Evaluation method

We evaluated the encoder during the fine-tuning process by measuring the accuracy of same
token masking task that the model was using to train, but on the validation set. Specifically,
every 200 steps we would randomly mask 10% of the tokens in each example in the validation
set, have the model predict what tokens were being masked, and log the average accuracy
of the predictions across all examples. Once the training process had plateaued, we ran the
same task on the test set to make sure performance was comparable.
For the encoder-decoder model, we evaluated the final result by first selecting a maxi-
mum sample of 20 examples from each genre and generating examples using values for
num_beams: 1, 3, 5. We then compared the resultant generated transliterations against
the true transliterations by calculating a BLEU score to see what effect the beam search was
having on overall performance. When it was determined that beam search was not helping
the results in any statistically significant manner, we again generated transliterations for
glyph sequences in the test set, but this time with a maximum of 150 examples from each
genre. Finally, we compared the BLEU scores against those of the baseline and performed
qualitative evaluation.
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5.3 Experimental details

The encoder was initialized with XLM-R weights and fine-tuned with a learning rate of 5e-05
and the AdamW optimizer. Train and eval batch sizes were 8. The MLM probability–that
is, the probability of any token being masked in a given step–was set to 0.10. It ran for 20
epochs, or 46,220 gradient steps, on a single A100 SXM 80GB.
The encoder-decoder with frozen encoder weights was trained with a learning rate of 5e-05
given 200 warmup steps and the AdamW optimizer. Train and evaluation batch sizes were
set to 16, and train and eval loss was logged every 200 steps. It was trained for 15 epochs,
or 10,400 gradient steps, on a single A100 SXM 80GB. Then, the encoder-decoder with the
encoder weights unfrozen was trained with the same hyperparameters for 78,850 steps.

5.4 Results

The encoder plateaued around 80% accuracy on the validation set, spending the last 16,000
steps unable to break out of the 80-81% accuracy range. Train and eval loss stayed together,
showing no signs of overfitting. The model was tested on samples from the test set on a
similar token masking probability of 0.1, and the results demonstrated that the eval loss
was generalized.
These were promising initial results regarding the ability of cross-lingual models to learn
Sumerian. We connected this model to an XLM-R decoder, enabled cross-attention, froze
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the encoder weights, and found that the decoder was able to make rapid initial gains in
aligning itself with the encoder to perform the objective. Once it began to plateau, we
unfroze the encoder weights. Loss decreased slowly but steadily.
Frankly, we were astounded by the performance of the model to generate nearly identical
translations as experts when given glyph sequences from the test set, first performing a
qualitative evaluation on a handful of examples. Next, we compared the BLEU (removing
special tokens and using character tokenization) scores on a sample of the test set to deter-
mine the effects of greedy search or beam search with a variable number of beams affected
the results. Since it did not appear to have any notable effect, we proceeded with calculating
the BLEU scores, once more with special tokens removed and with character tokenization,
on a larger sample, taking at most 150 examples from each genre. The results are presented
in Table 4 and Table 5.

Genre # of Examples Average BLEU Score Baseline BLEU Score
Royal/Monumental 1 100.00 12.58
Administrative 150 97.23 7.65
Unknown 18 93.78 9.11
Legal 35 93.64 7.04
Letter 43 91.55 6.71
Royal Inscription 149 90.59 7.43
Literary 67 71.71 5.57
Liturgy 2 65.39 5.39
Mathematical 1 63.72 10.21
Scientific 1 58.88 3.91
Lexical 1 11.47 4.96
Overall Average – 90.07 7.20

Table 4: Results by genre. BLEU scores of generated transliterations versus transliterations
generated by sampling from the set of each glyph’s possible readings.

Genre # of Examples Average BLEU Score Baseline BLEU Score
Ur III 298 95.66 7.35
Neo-Assyrian 1 95.42 9.07
Old Akkadian 20 91.00 7.73
Early Dynastic IIIa 5 87.63 8.15
Lagash II 18 84.73 7.98
Early Dynastic IIIb 38 83.34 8.17
Unknown 6 81.16 9.24
Neo-Babylonian 2 74.92 4.21
Old Babylonian 80 74.57 5.96
Overall Average – 90.07 7.24

Table 5: Results by period using the same methodology as Table 4. Baseline texts were
regenerated.

• True transliteration: 1(u) 1(aš) ku3 gin2 la2 igi- -gal2 lugal-iti-da ku3-dim2-ra lugal-
iti-da aga3-us2-e gu2 i3-ni-gar 5(aš) še lid2-ga 2(diš)-kam-ma-še3 gu2 i3-ni-gar lugal-
en-nu ur-d-pa-e3 ur-li lu2-ki-inim bi3

• Generated: 1(u) 1(aš) ku3 gin2 la2 igi gal2 lugal-iti-da ku3-dim2-ra lugal-iti-da aga3-
us2-e gu2 i3-NI-gar 5(aš) še lid2-ga 2(diš)-kam-ma-še3 gu2 i3-NI2-gar lugal-en-nu
ur-d-pa-e3 ur-li3 lu2-ki-inim PI
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6 Analysis

These results are both very exciting and intuitive given the nature of the underlying data.
Because the training data is dominated by administrative examples, it is natural that that
would be the best performing category (excluding the single Royal/Monumental example).
Legal, letter, and royal inscription texts are formal and highly standardized texts, so it is
understandble why it performs well on those.
On the other hand, the literary, liturgical, mathematical, and scientific examples have a
much different style, vocabulary, and form than the rest of the corpus. These are the genres
that provide the greatest challenge to even renowned Assyriologists, and many are still not
completely understood. The latter three genres also have either one or two examples, so it
is difficult to say how generalizable the results are to the genre as a whole.
Finally, the outlier lexical text is also expected. In retrospect, these probably should have
been excluded from the corpus altogether. Lexical texts are just lists of words, so there is
not much of a consistent pattern for the model to learn.
Performing manual error analysis, there is a particularly common form of error. A
widespread convention in transliteration is to represent the glyph with an uppercase name of
a reading when the reading is uncertain. As to be expected, the model is unable to discern
these from valid readings. For example, for one text, the true transliteration has ”dumu
inim šara2” but the model predicted ”dumu KA šara2.” Here, ”KA” is, in fact, the correct
way to represent the glyph for ”inim.” This can be mitigated in future work by replacing
these occurrences in the training data with a sample from the sign’s most common readings.

7 Conclusion and limitations

This success is despite some notable limitations of the project. First, a model such as this
can only be as good as the underlying data. One Professor of Assyriology told us that the
administrative transliterations were done by a single team rapidly and decades ago. As a
result, there are a number of errors. However, so long as these errors aren’t systematic, our
model can have isolate them and suggest potential fixes.
The quality of the data is further hindered by the broken condition of most of the tablets,
limiting the ability of the model to make informed predictions based on what context remains.
Additionally, administrative documents have an out-sized representation in the training
data, and subsequent work should mitigate this by more evenly representing the genres by
excluding administrative documents or duplicating examples in other genres.
Our results show the remarkable efficacy of multilingual models in the sequence-to-sequence
task of transliterating the world’s oldest writing. More than just applications in Assyri-
ology, our research demonstrates the applicability of modern natural language processing
techniques in the humanities, even on ancient scripts. It is also not just a theoretical win.
GILGaMeSH has a number of tangible applications in advancing the field, from translit-
erating new tablets to highlighting areas of review for specialists to using the encoder to
predict the tokens in a broken-away segment.
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