
Over-Complicating GPT
Stanford CS224N {Custom} Project

Daniel Yang
Department of Computer Science

Stanford University
dy92634@stanford.edu

Abstract

In this paper, I combine controllable text generation (CTG) with unsupervised
learning to reword or paraphrase text into either more complex or simpler versions
of itself. Being able to change the complexity of sentences marks a giant leap
forward in generative models by enabling better adaptation for generative NLP
tasks. Due to the lack of labeled text datasets for text difficulty, I will utilize
unsupervised training with a custom loss function and a modified generation
process to achieve my goals of reconstructing source sentences with either higher
or lower complexity. My custom functions attempt to control the word lengths
to achieve the CTG goals. Ultimately, this research shows substantial results in
controlling text difficulty through custom loss and generate functions within the
context of subsupervised learning. However, modifying the generate function
compared to the loss function results in better fluency and higher quality results.

1 Introduction

Controllable text generation (CTG) is a rapidly expanding field of natural language processing (NLP).
Recently, this topic has drawn substantial attention for its mass research potential. Exploring the
intricacies of CTG is vital for the development and performance of advanced generative models
(Zhang, 2023). Being able to control specific sentence parameters such as style, sentiment, length,
difficulty, etc. enables further enhancements for generated text accessibility and adaptability. The
advent of large language models has provided new dimensions and capabilities for CTG, but chal-
lenges for efficient training and model accuracy persist (Martínez-Murillo, 2023). In this paper,
we focus on controlling language difficulty–consisting of word difficulty, sentence structure, and
language syntax–in generative word models. Specifically, we aim to create a generative model
that can replicate input English sentences with varying levels of complexity. The potential uses
or benefits for these generative models are plentiful; languages can either be simplified (enabling
wider accessibility) or increased in complexity (for academic journal purposes). I developed two
techniques for CTG enhancements (one utilizing a custom loss function and the second modifying
the generation process) within the generative models. The goals for these modification additions
is to increase/decrease the frequency of longer words (seen as more complex). These incentives
would theoretically dictate the difficulty of the generated text. This paper will evaluate the accuracy
metrics of both the methods outlined above and compare them to each other as well as existing studies
on unsupervised paraphrasing. Additionally, I have also developed several new unique metrics to
evaluate language complexity in any given generated text.

2 Related Work

My work focuses on the GPT2 model for generation, but the methodologies and code from this paper
can be easily applied to other language models. The following are papers that guide and provide
context for some of my approaches.

Stanford CS224N Natural Language Processing with Deep Learning



• (Hegde and Patil, 2020)1 This paper also utilizes the GPT2 model for unsupervised para-
phrasing. The techniques in Hedge paper used to preprocess the training data were partially
adopted in my implementation. While Hedge uses internet posts as its training set, I’ve
utilized a larger corpus from Wikipedia sentences with additional preprocessing steps.

• (Dolan et al., 2004)2 This paper provides several more benchmarks towards the accuracy
of generated text. The paper also utilizes an unsupervised approach for reconstructing
sentences and uses Alignment Error Rate (AER) to score its paraphrasing quality. Both
Dolan and Hedge1 aim to reword input text, but my research also includes adding a CTG
component to the output.

• (Zhou et al., 2023)3 A paper that explores CTG through utilizing an augmented corpus. The
authors are able to label their target sentences for their desired CTG traits and fine tune the
model on this augmented corpus. My research differs from Zhou in several ways. Firstly, I
use a traditional unlabeled corpus similar to Hedge1 and Dolan2. All the CTG modifications
were done in the decoder and loss function. Secondly, my research focuses on sentence
difficutly, which was not one of the tasks covered in the Zhou paper.

• (Gao et al., 2018)4 This paper aims to achieve a similar goal towards difficulty CTG. The
paper attempts to generate questions and answer pairs of varying difficulty. To implement
the difficulty control, the paper creates a lookup table that maps difficulty labels to a variable.
The variable is combined with the final hidden state within the encoder to initialize the
decoder. Furthermore, the model is fed a labeled dataset which was labeled using the
SQuAD evaluation [Rajpurkar et al, 2016]. My research uses unsupervised learning with an
unlabeled dataset and uses a different modification in the decoder. My work marks a step
forward by combining the accurate difficulty generation with large unlabeled datasets.

3 Approach

To increase/decrease our model’s output sentence complexity, I chose to increase the frequency
of longer words. I fine-tuned a GPT2 model using the hugging face transformers library and the
following sections outline the key milestones and file descriptions for all the code I wrote which can
be found at https://github.com/danielyang10237/controllable-text-generation

3.1 Data Preprocessing (dataparser.py)

The first step would be to format our text corpus to be fed into our model. Our unsupervised technique
requires constructing both a source and target sentence. The goal for our model is to reconstruct the
target sentence from the source. To ensure the reconstruction process varies the word choice and
word ordering, we intentionally corrupt the target sentence to get the source sentence. We remove all
stop words and occasionally replace words with synonyms using the wordnet interface from Natural
Language Toolkit (NLTK) library. We also by random chance shuffle the word order for certain
words.

3.2 Model Training (model.py)

Before training, I removed any inputs that exceed our model’s maximum token length. I used the
pretrained weights and the GPT2 tokenizer provided by Hugging Face (gpt, 2019). The target and
source sentence lines from our preprocessing are appended as follows:

input_tensor = token_start + source_line + token_delimiter + target_line

token_start and token_delimiter are unique character sequences that serve to both separate the
key sentence parts and tell the model this sentence should be reconstructed.

I also defined a function pack_tensor borrowed from (Kim, 2023). This function essentially packs an
input tensor with as many input texts as possible to maximize training speed.

2

https://github.com/danielyang10237/controllable-text-generation


The core component powering the CTG is the custom loss function which penalizes the model for
either creating longer or shorter words.

H(y, ŷ) = −
C∑

c=1

yc log(ŷc) (1)

I took the default cross entropy loss function (equation 1) and added an additional penalty for
generating shorter/longer words.

H(y, ŷ) = −
C∑

c=1

yc log(ŷc)±
J∑

j=1

P ∗max(0, zj − T ) (2)

Equation 2 shows the final loss function applied to the training. The equation applies a linearly scaled
reward/penalty for the lengths of predicted token probabilities. C represents all the potential logits or
tokens in our vocabulary. yc is the actual probability value for token c and ŷc is the predicted value
for token c. j represents the J highest logits from our model predictions. P is the penalty scalar, zj is
the decoded token character length from our best token candidates, and T is the minimum threshold
for acceptable decoded word length. We apply the adjusted loss every time a high predicted token
exceeds our threshold for word length.

3.3 Text Generation (generate.py)

After reading in prompts, the model will output a reconstructed or paraphrased version of the source
in accordance with the CTG goal. We start by constructing our input tensor. First, we take our
prompt and applying a version of the scrambling described in subsection 4.1, then we append our
token_start and token_delimiter to either side. We send this input tensor through the encoder
before our softmax (Galassi et al., 2020). For each of the next predicted tokens, we apply a custom
sampling function.

Pi =
e

li
T∑n

j=1 e
lj
T

(3)

Equation 3 shows the default probability adjustment for all logits before sampling the next token
using softmax with temperature. We want to incentivize the selection of longer words and advanced
punctuation.

Pi =
e

li∗(1±P∗zi±Ci)

T∑n
j=1 e

lj∗(1±P∗zj±Cj)

T

(4)

Equation 4 represents our modified softmax function that modifies our distribution to either incentivize
or disincentive complex words or symbols. l is the logits outputted by our model used to predict the
next token. z is the length of the decoded word and P is the scaling factor. C is a positive constant
if the decoded token contains an element from our advanced punctuation set and is zero otherwise.
After applying our custom modifications to the logits, we randomly sample the next token using the
torch multinomial function. Thus, longer and more complex tokens have a higher chance of being
selected to be outputted.

3.4 Model Evaluation (evaluate.py)

This file contains all the functions used to evaluate and score my model. The functions can be divided
into two groups: functions that evaluate the accuracy and functions that evaluate the difficulty. We
have two functions to calculate the ROUGE scores and the BERT scores between our generated text
and reference text. The reference text was extracted from Microft’s paraphrase text corpus which
provides the source text and the corresponding human paraphrased text (preprocessing code found in
paraphraseparser.py) (Dolan, 2016). In our ROUGE and BERT, functions, I compare the model
generated text to the human written ones. The other functions explore the difficulty of generated text.
One function calculates the average word length of our generated text, and a second function which
counts the frequency of words that are not classified as "simple" (lexicon stored on a set).

3



4 Experiments

This research required creating three different models and comparing the evaluation metrics between
the three. One model serves as the default, with no custom modifications to serve as an additional
baseline for our difficulty generation comparisons. The following sections go into depth about our
experimental process.

4.1 Data

The text used for training was sourced from wikipedia via Kaggle (Ortman, 2018). Each sentence
from the wikipedia page is one line in the .txt file which translates to one input tensor into the model
training. There are 7.8 million sentences in entire corpus but only a twentieth of which was used
for training. Since all sentences are listed alphabetically, I selected every twentieth sentence to be
fed into training. All lines are padded to the max token length which I currently set at 64. The text
preprocessing necessary for training is outlined in section 4.1.

4.2 Evaluation method

There are two categories of evaluation methods I used for this research. Accuracy metrics are used to
ensure the model quality doesn’t deviate too far from the default model when trying to integrate CTG.
Difficulty metrics actually evaluate the difficulty of the generated text compared to the default, which
prove the efficacy and effectiveness of the CTG custom components.

Accuracy evaluation Our accuracy evaluations compare our generated text to human written para-
phrased references provided by the Microsoft research corpus (Dolan, 2016). Every line in the corpus
is fed through our model and cross referenced against the provided human translation/paraphrase.
For the purposes of this research, I am not too concerned with the accuracy scores. I’m more focused
on the difficulty of the generated text and not how well it correlates with provided human rewording.
However, it is still important to ensure the model still performs the task at hand to a reasonable degree
of quality.

ROUGE-1: ROUGE-1 counts the overlapping unigrams or single words between our model outputs
and the human references. The score is calculated by finding the frequency of unigrams in the
reference text also present in the generated text. The score ultimately captures the model’s ability to
retain important words during translation.

ROUGE-2: ROUGE-2 counts the overlapping bigrams or two word sequences between our model
outputs and the human references. We count the number of two sequence word grams from the
reference text that also appears in our generated text. Naturally, we expect a lower ROUGE-2 score
compared to ROUGE-1 because it’s more stringent on the word positioning.

ROUGE-L: ROUGE-L finds the longest matching subsequence of words between our generated text
and reference text. The longest match subsequence is a series of words that appear in the same order,
but not necessarily adjacent to each other. Evaluating our model with ROUGE-L ensures the fluency
and flow of our generated sentences.

BERT SCORE: Our BERT score evaluation for this model consists of three components: precision,
recall, and F1-score. Our precision (p) is found by measuring the maximum similarity the tokens
in the generated has with the tokens in the reference text, which captures the semantic difference.
Recall (R) is examining the maximum similarity the reference text tokens have with the generated
text tokens. F1-score is ultimately the accumulation of both precision and recall.

Difficulty evaluation WORD_LEN: Word_len is a custom evaluation metric where the average
word length within a sentence is measured. Longer words correlate with more advanced vocabulary,
which would indicate more complex language.

comm_freq_gen: comm_freq_gen is another custom evaluation metric that comprises of measuring the
amount of not simplistic words found inside a generated text. I created a set of basic comm_freq_gen
words and this metric calculates the frequency of words in the generated text that isn’t found in the set

Manual: Lastly, I utilized manual and personal evaluation to estimate the difficulty of the generated
text compared to the source/original. The table below contains some samples.

4



Source text Despite feeling tired, she went for a run.
Generated text Despite being tired and feeling exhausted, he went on to run.

Table 1: Higher complexity generation

Source text I will lend you my car provided that you return it on time.
Generated text I’ll give you a car that will be lent to you as soon as I can.

Table 2: Lower complexity generation

4.3 Experimental details

I trained a total of three models, one using the provided loss function, one with the custom loss
function to incentivize longer words and the third with the custom loss function to generate shorter
words. Our training process consists of five epochs in total, each one running through the entire
training set with batch sizes of 16. My learning rate is set at 0.001 with the initial warmup steps set to
200. The training time for each of our models took around three hours.

Figure 1: Training of three different loss functions. Long incentivizes longer word generation. Short
promotes shorter word generation

4.4 Results

For our accuracy measures on ROUGE and BERT, we compare our models to existing unsupervised
models. Our baselines are VAE (Bowman et al., 2016), UPSA (Liu et al., 2020), and Hedge1 (Hegde
and Patil, 2020). I have assembled five models: Default0, DefaultL, DefaultS, LongL, and ShortS.

Default0: Vanilla model, unmodified softmax loss during training
DefaultL: Unmodified softmax loss during training combined with custom generate function for
complex sentences
DefaultS: Unmodified softmax loss during training combined with custom generate function for
simpler sentences
LongL: Custom softmax loss (training) and custom text generation functions for complex sentences
ShortS: Custom softmax loss (training) and custom text generation functions for simpler sentences

5



Figure 2: Table 3

For our BERT scores, we referance a NB-SVM (trigram) model provided by Hedge as a baseline.

Figure 3: Table 4

The following shows our difficulty evaluation results. Our default0 model without any modifications
serves as our baseline. The table shows the effects the custom generation and loss functions have on
our outputted text.

Figure 4: Table 5

Comments I didn’t expect the ROUGE scores for the custom loss function models to be so low.
This indicates our paraphrasing deviates too far from the prompt which suggests my corrections
for sentence difficulty was too extreme. I was also surprised by the custom loss function model’s
performance on the sentence complexity. The custom loss function does exceptionally well on
creating more complex sentence words but has almost no effect on generating less complex sentences.
This indicates there’s either more potential in up scaling sentence complexity or the penalties for
generating long sentences were not strong enough.

6



5 Analysis

From table 3, we can see the ROUGE scores obtained from our unmodified training process are
comparable to the previous unsupervised learning paraphrasing models. This indicates my approach
for pre-processing data and my training process was robust and adequate enough to perform the initial
translation task at hand. Any significant differences in accuracy metrics between my models and the
baseline is largely due to the design of the model itself. We see a drop in ROUGE scores (table 4)
when we switch to our custom trained models. This isn’t an inherently a detriment, as the goal of this
research paper focuses on implementing CTG. In the event we are trying to manipulate model output,
the lower ROUGE states our generated output words are different, which could be a positive sign.

Our BERT scores also see a dip for our custom trained functions, but it’s not as significant as ROUGE.
BERT measures the semantic similarities in the model outputs. A lower BERT score for our custom
trained models suggests these models lose some semantic values in their translations (which can be
visually observed in 4.2 and 4.2). This means that the implementation of CTG during training trades
off with some of the sentence semantic accuracy. When trying to manipulate the difficulty of the
target sentence, we naturally lose some precision and detail.

In regards to the difficulty of the output text, we do see significant differences from our custom
functions. Our custom loss function has a more pronounced effect on manipulating our sentence
complexity than our custom generate function. This is likely due to a combination of higher
rewards/penalties for the loss function compared to the generation sampling and the generation
sampling considering less tokens, which narrows its options. Combining both the custom trained
model with our custom generate function produced the most extreme results, which indicates both
can work hand in hand with each other. Our default0 model serves as the baseline, which is the
vanilla GPT2 model without any modifications.

Our custom generation function also appears to reduce the accuracy of our CTG models compared to
baseline models from other studies (but less so than our custom training loss). When trying to reword
sentences with more than one clause, our model struggles to retain all relevant information when
reconstructing the output. Thus, we lose key facts and details. This dip in performance can be largely
explained by the use of beams during generation. Beams, which consider future potentially generated
tokens after our immediate next token, drastically improve the model’s ability to produce coherent
non repeating phrases. While models from the other studies are able to capitalize on this tool, my
custom generate function omits this feature.

I also observed random sequences of symbols such as "!!!" or "???@" when trying to generate
longer words. This would artificially inflate the average word length in our outputted text and is
a result of the model constantly being rewarded for appending extra characters to pad its words.
Further measures to normalize this behavior should be needed. My results were best using the default
unmodified training with the custom generate function. The fluency is preserved while achieving the
task at hand. This is likely because choosing the next token to generate doesn’t affect the original
flow/fluency of the model but still increases the chances longer and more difficult words are chosen.
My recommendations would be to focus more on how the model chooses the next token during
generation for this CTG task.

6 Conclusion

This research shows CTG on sentence difficulty can be applied to unsupervised learning techniques
through both the training and generating process. Some studies have been conducted on controlling
the difficulty of generated text, but only through a labeled corpus with supervised training. This study
shows the effectiveness of training CTG difficulty models with unlabeled datasets using unsupervised
reconstruction techniques.

When trying to linearly penalize/reward the model for a specific CTG task, it’s easy to overcompensate,
leading to incoherent and unrelated text generation. One big limitation of this study’s methods is
the incoherent and garbage padding and words the model learns to append to sentences. I often
observed unrelated long texts being appended to outputs and the omission of certain key details
in the original source text when utilizing a custom loss function. Consequently, we observe much
higher accuracy and fluency using the custom generate function with default training. Changing the

7



generation process rather than the training process produces better results across all evaluation data
sets.

The outcomes of the adapted softmax loss equation used in this research can likely be drastically
improved and used for further research. The linearity scaling I used is somewhat crude and prone to
extreme manipulations. This prevents the model from converging faster and pushes bad generation
practices. With labeled datasets on text generation that provide both easy and difficult matches for
sentences few and far between, exploring the possibilities of unsupervised CTG becomes ever more
important.

References
2019. Open source gpt2. Hugging Face.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating sentences from a continuous space. In Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning, pages 10–21, Berlin, Germany. Association
for Computational Linguistics.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Unsupervised construction of large paraphrase
corpora: Exploiting massively parallel news sources. In COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics, pages 350–356, Geneva, Switzerland.
COLING.

William Dolan. 2016. Microsoft research paraphrase corpus.

Andrea Galassi, Marco Lippi, and Paolo Torroni. 2020. Attention in natural language processing.
IEEE transactions on neural networks and learning systems, 32(10):4291–4308.

Yifan Gao, Lidong Bing, Wang Chen, Michael R Lyu, and Irwin King. 2018. Difficulty controllable
generation of reading comprehension questions.

Chaitra Hegde and Shrikumar Patil. 2020. Unsupervised paraphrase generation using pre-trained
language models. Online. arXiv preprint arXiv:2006.05477.

Sean Kim. 2023. Npc-gpt — an exploration of large language models in video games. Medium.

Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou, Jie Zhou, and Sen Song. 2020. Unsupervised
paraphrasing by simulated annealing. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 302–312, Online. Association for Computational Linguistics.

Iván Martínez-Murillo. 2023. Commonsense knowledge and controllable techniques for an effective
and efficient approach to text generation.

Mike Ortman. 2018. Wikipedia sentences corpus. Online. kaggle.

Haolin; Li Shaoyu; Zhou Ming; Song Dawei Zhang, Hanqing; Song. 2023. A survey of controllable
text generation using transformer-based pre-trained language models. Online. ACM Computing
Surveys 56.3.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan Wilcox, Ryan Cotterell, and Mrinmaya Sachan.
2023. Controlled text generation with natural language instructions. In International Conference
on Machine Learning, pages 42602–42613. PMLR.

8

https://doi.org/10.18653/v1/K16-1002
https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.28
https://doi.org/10.18653/v1/2020.acl-main.28
https://www.kaggle.com/datasets/mikeortman/wikipedia-sentences
https://dl.acm.org/doi/abs/10.1145/3617680
https://dl.acm.org/doi/abs/10.1145/3617680

	Introduction
	Related Work
	Approach
	Data Preprocessing (dataparser.py)
	Model Training (model.py)
	Text Generation (generate.py)
	Model Evaluation (evaluate.py)

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

