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Abstract

Following Yu et al. (2020) we investigate a method for mitigating gradient interfer-
ence in multi-task learning by projecting conflicting task gradients onto the normal
plane of each other, thus avoiding detrimental gradient conflicts. We are applying
projected conflicting gradients method to test if it will improve BERT’s perfor-
mance on sentiment analysis, paraphrase detection (quora dataset), and semantic
textual similarity tasks (SemEval STS benchmark dataset). We find that PCgrad
multitask learning performs worse than single task learning, but note that there are
a significant number of unexplored variations of our model which likely perform
better.

1 Introduction

We attempt to improve upon a pre-trained BERT Devlin et al. (2019) model so that it performs
well when simultaneously used on three separate linguistic tasks: Sentiment Analysis, Paraphrase
detection, and Semantic textual analysis. We attempt to do this by implementing the multi-tasking
learning method described Yu et al. (2020). The method used there is to consider a modification of
gradient descent for a loss function consisting of a sum of loss functions for multiple individual tasks.
The modification involves computing the individual task gradients, and projecting them onto each
others normal plans so that they do not interfere with each other. We hypothesise that this method
will improve the performance of BERT fine tuned individually to each task.

The baseline we compare our work to is a pre-trained BERT that is individually fine tuned to
accomplish each of these tasks separately. The BERT model takes in a sequence of tokens, and returns
a contextual representation of each. The first token is always set to "CLS", and its representation
"pools" together the information in the entire input sentence into one vector. This output vector is
then used as input for a final task dependent classifier layer.

The algorithm we use to attempt to improve BERT, PCGrad Yu et al. (2020) utilizes a straightforward
method to resolve gradient conflicts during optimization. When two tasks’ gradients are opposed,
indicated by a negative cosine similarity, PCGrad projects each task’s gradient onto the orthogonal
plane of the other’s gradient. This process effectively eliminates the component of the gradient
causing the conflict, thereby minimizing harmful interference between the tasks’ gradients. Fig. 2. in
the document illustrates this concept visually.

2 Related Work

The paper by Yu et al., "Gradient Surgery for Multi-Task Learning" Yu et al. (2020) addresses the
challenge of gradient interference in multi-task learning environments. The motivation stems from
the observation that when training models on multiple tasks simultaneously, conflicting gradients can
hamper learning, leading to suboptimal performance on one or more tasks. The authors propose a
novel solution, PCGrad (Projected Conflicting Gradients), which minimizes negative interactions
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between task gradients by projecting conflicting gradients onto each other’s normal planes. This
technique allows for more harmonious learning across tasks, potentially unlocking greater efficiencies
and performance enhancements in both supervised and reinforcement learning settings. Cartoon
explanation of PCGrad method is provided on Figure 1 (copied from Yu et al. (2020)).

Previous solutions (e.g. Devin et al. (2016); Fernando et al. (2017); Rosenbaum et al. (2019)) include
architectural adjustments and problem decomposition to simplify learning, but these often require
complex integration techniques like network distillation. For example, there are prior works which
combat optimization challenges by only rescaling task gradients Chen et al. (2018); Sener and Koltun
(2018). In contrast, this paper introduces a straightforward, effective algorithm, PCGrad, which
resolves gradient conflicts by altering both the magnitude and direction of task gradients, based
on their cosine similarity, to improve multi-task learning performance. While idea of using cosine
similarity of gradients is not novel Du et al. (2018), paper Yu et al. (2020) was first to employ it for
identification of conflicts between task gradients.

Figure 1: Visualization of PCGrad on a 2D multi-task optimization problem Yu et al. (2020). (a) A multi-task
objective landscape. (b) & (c) Contour plots of the individual task objectives that comprise (a). (d) Trajectory of
gradient updates on the multi-task objective using the Adam optimizer. The gradient vectors of the two tasks at
the end of the trajectory are indicated by blue and red arrows, where the relative lengths are on a log scale. (e)
Trajectory of gradient updates on the multi-task objective using Adam with PCGrad.

PCGrad utilizes a straightforward method to resolve gradient conflicts during optimization. When
two tasks’ gradients are opposed, indicated by a negative cosine similarity, PCGrad projects each
task’s gradient onto the orthogonal plane of the other’s gradient. This process effectively eliminates
the component of the gradient causing the conflict, thereby minimizing harmful interference between
the tasks’ gradients. Fig. 2. in the document illustrates this concept visually.

Algorithm 1 PCGrad Update Rule
Require: parameters θ, task minibatch B = {Tk}

1: gk ← ∇θLk(θ) ∀k
2: gPC

k ← gk ∀k
3: for Ti ∈ B do
4: for Tj

uniformly∼ B \ Ti in random order do
5: if gPC

i · gj < 0 then
6: #Subtract the projection of gPC

i onto gj

7: Set gPC
i = gPC

i −
gPC
i ·gj

∥gj∥2
gj

8: return update ∆θ = gPC =
∑

i g
PC
i

Figure 2: Conflicting gradients and PCGrad. In (a),
tasks i and j have conflicting gradient directions, which
can lead to destructive interference. In (b) and (c), we
illustrate the PCGrad algorithm in the case where gradi-
ents are conflicting. Non-conflicting task gradients (d)
are not altered under PCGrad.

The paper contributes to the field by providing a model-agnostic approach that can be easily integrated
into existing multi-task frameworks, demonstrating its effectiveness through extensive experiments
across various domains. While the paper presents a compelling method for addressing gradient
interference, a deeper analysis of the types of tasks and models where PCGrad is most effective could
strengthen its findings.

Despite these potential areas for further exploration, the paper’s findings are convincing, offering
a practical solution to a pervasive problem in multi-task learning. By improving the interaction
between task gradients, PCGrad represents a significant step forward in the quest for more efficient
and effective multi-task learning models, contributing to the broader goal of developing versatile and
powerful artificial intelligence systems.
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Figure 3: Proposed architecture. Only the parameters in the fine-tuning layer and the task specific
final layer will be updated

This method contrasts with sequential learning strategies in continual learning by focusing on
positive transfer across multiple tasks simultaneously, without the need for complex programming
solutions. The proposed approach demonstrates superior performance compared to previous methods,
highlighting its potential for more efficient multi-task learning.

Authors of "Gradient Surgery for Multi-Task Learning" Yu et al. (2020) pinpoint three primary
hurdles in multi-task optimization: conflicting gradients, high positive curvature, and significant
gradient differences. They introduce PCGrad, a "gradient surgery" technique, to address these issues,
enhancing optimization significantly. The simplicity and model-independent nature of PCGrad sug-
gest its potential applicability in broader contexts like meta-learning and natural language processing,
offering a promising direction for future research into overcoming optimization challenges in deep
learning.

3 Approach

We show our architecture in 3. The output of BERT consists of a single vector encoding the CLS
token appended to the beginning of the sentence. The fine-tuning layer consists of a single linear
layer followed by a non-linearity. The final layer is a linear layer returning logits for the task at hand,
or a single real number for tasks requiring continuous outputs.

In single task training, this entire architecture is separately fine tuned for each task X before being
evaluated.

The in multi-task PCgrad training, all tasks are trained at once. A batch is taken from each of the three
datasets, and for each the loss function is computed. Gradients are then computed with respect to all
parameters, and gradients of loss functions in one task are simply zero with respect to parameters of
a final layer for a different task.

4 Experiments

4.1 Data

We describe the datasets in table 1.

3



Task Description Dataset Name Dataset Description

Sentiment
Analysis

Sentiment of a sentence is to be as-
signed an integer from 0 (most neg-
ative) to 4 (most positive).

Stanford Sentiment
Treebank

Single sentences from movie
reviews annotated by human
judges. Train/dev/test split of
8,544/1,101/2,210 examples.

Paraphrase de-
tection

Two sentences are taken as input and
a binary variable is output indicating
specifying if they are paraphrases of
one another.

Quora dataset Question pairs with binary
labels specifying if they
are paraphrases of one an-
other. Train/dev/test split of
141,506 /20,215/40,431 ex-
amples.

Semantic tex-
tual analysis

Two sentences are taken as input and
given a continuous similarity score
from 0 (least similar) to 5 (most sim-
ilar).

SemEval STS Bench-
mark Dataset

Sentance pairs labeled
by degree of similarity.
Train/dev/test split of 6,041
/864/1,726 examples.

Table 1: Table describing tasks and datasets used to train our model to accomplish these tasks.

4.2 Evaluation method

We evaluate our model on the three tasks described in table1. To evaluate Sentiment Analysis and
Paraphrase detection, we use a cross entropy loss function since the task is discrete classification.
For the Semantic textual analysis we use the Pearson correlation coefficient. We use this rather than
least-square means because it is only necessary to preserve the ground-truth outputs up to a positive
linear transformation to maintain the information about semantic similarly.

For Sentiment Analysis and Semantic textual analysis, we also compute accuracy scores, i.e. the
percentage of the dev set data for which the model correctly predicts the data.

4.3 Experimental details

We use a learning rate of 10−5. Models are trained for 10 epochs and a batch size of 8.

4.4 Results

Task Metric Single-Train PCgrad

Sentiment Analysis Percent accuracy 0.520 0.436
Paraphrase detection Percent accuracy 0.696 0.373
Semantic textual analysis Pearson Coefficient 0.286 0.279

Table 2: Performance of PCgrad on the various tasks compared to training specifically on one task.

Our PCgrad multi-task implementation performs significantly worse than expected, give that it is
meant to be an improvement over single task training. It performs worse on every task. We note that
our implementation performs similarly poorly with only multi-task learning even without PC grad.
Therefor, it is likely we did not overcome certain basic obstacles when transitioning from single to
multi-task learning.

5 Analysis

Consider figure 4 which shows the performance of the model for the various tasks after each epoch
of training. After about two epochs the model performs significantly worse, before going back to
around the original performance. After this more or less does not improve at all as training continues.
We were not able precisely to pinpoint the root of this behavior. It is possible that longer training
times or more layers after the BERT model would overcome this obstacle.
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Figure 4: Learning history of PCgrad multi-task model.

6 Conclusion

In this work we have contrasted the performance of PCgrad multitask learning on a BERT model with
task specific heads to a similar architecture with single task training on the same tasks. We found that
the multitask training performed significantly worse than the single task training. However, our work
is severely limited as it left unexplored a number of avenues for potentially overcoming this decrease
in performance, as we have mentioned. In future work we hope to explore these avenues and show
that PCgrad with multitask learning can perform better.
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