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Abstract

Bidirectional Encoder Representations from Transfers (BERT) is a transformer-
based model that generates contextual word embeddings. The model contains 12
Encoder Transformer Layers each consisting of multi-head attention, followed by
an additive and normalization layer with a residual connection, a feed-forward
layer, and a final additive and normalization layer with a residual connection. I
started with a minimal base version of BERT, called minbert, which I completed
implementations of the Multi-head Self-Attention and the Transformer Layer,
including a portion of the Adam stochastic optimization method. My goal was
to make enhancements to minbert to obtain robust and generalizable sentence
embeddings that perform well on the following three tasks: sentiment analysis,
paraphrase detection and semantic textual similarity. I was able to achieve a 0.520
accuracy, 0.583 accuracy, and 0.528 correlation respectively (overall score of 0.589)
on holdout development datasets of the aforementioned tasks.

1 Key Information to include

• Mentor: Rohan Taori

• External Collaborators (if you have any): N/A

• Sharing project: No

2 Introduction

My base model was a minimal implementation of Bidirectional Encoder Representations from Trans-
formers (BERT) Devlin et al. (2018), called minbert. The model contains 12 Encoder Transformer
Layers each consisting of multi-head attention, followed by an additive and normalization layer
with a residual connection, a feed-forward layer, and a final additive and normalization layer with a
residual connection. The transformer architecture is based on work from “Attention Is All You Need”
Vaswani et al. (2017).

I completed implementations of the Multi-head Self-Attention and the Transformer Layer, including a
portion of the Adam stochastic optimization method. I based my implementation of the step function
for Adam optimization on the efficient version of Algorithm 1 as outlined in “Adam: A Method for
Stochastic Optimization” Kingma and Ba (2014).

2.1 Multi-head Self-Attention

Attention functions take query vectors and a set of key-value pair vectors and map them to some
output denoting the compatibility of the query with the given keys. Multi-head attention can be
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thought of as a group of attention functions running in parallel, and they allow the model to jointly
attend to information from different representations, at different positions. Single attention heads
typically do not allow this joint behavior. I summarize the mathematical formulas for Self-Attention
and Multi-head Attention as described in Vaswani et al. (2017):

Attention (Q,K, V ) = softmax
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MHA (Q,K, V ) = Concat (head1, . . . , headh)WO (3)

2.2 Adam Optimizer

Adam is a method for stochastic optimization that “computes individual adaptive learning rates for
different parameters from estimates of first and second moments of the gradients” Kingma and Ba
(2014). I used a variation of Adam, called AdamW, where the weight decay is performed only after
controlling the parameter-wise step size - the regularization term is outside of the moving averages
and proportional to the weight itself.

2.3 Downstream Tasks and Goal

The goal of the project was to explore and understand ways to obtain robust and generalizable
embeddings that perform well in multiple downstream tasks. The tasks were:

1. Sentiment Analysis: The task of classifying text to understanding which affective state (e.g.,
positive, negative, . . . ) is expressed.

2. Paraphrase Detection: The task of finding paraphrases of texts in a large corpus of passages.
At its essence, this task seeks to determine whether particular words or phrases convey
the same semantic meaning. The ultimate outcome would be binary (i.e., “yes” one is a
paraphrase of other, or “no” they are not).

3. Semantic Textual Similarity: The task seeks to capture the notion that some texts are more
similar than others by measuring the degree of semantic equivalence. To account for the
degree of semantic equivalence there is a scale from 0 (denoting not related) to 5 (denoting
they have the same meaning).

2.4 Complexity and Difficulty

When BERT was first introduced it achieved incredible results in many language understanding
tasks. Pre-trained word embeddings from BERT acted as generalized word embeddings to be used as
features in downstream models, as well as re-used across different language tasks. The effectiveness
of this approach limited the need to train new models from scratch. My base model, minbert, is a
strict subset of the original BERT, lacking some of the capabilities that BERT contained.

BERT is pre-trained on Masked Language Model (MLM) and Next Sentence Prediction (NSP) using
a very large cross domain corpus of training data. The MLM involves masking a randomly selected
predefined percentage of words and then attempting to predict the missing word. NSP attempts to
predict the next sequence of words (i.e., next sentence) to follow a given sentence. Effectively, MLM
aims to understand relationships between words and NSP aims to understand dependencies across
sentences. The base implementation of minbert does not support MLM nor NSP.

Being trained on a very large cross domain corpus of training data allows BERT to have a general
understanding of context, but this can also cause BERT to reach a ceiling on performance for any
domain specific task, such as text classification in the Healthcare field. Words do not necessarily
have the same meaning across different domains. Minbert being a subset of BERT suffers from the
same dilemma. Here, my goal was to create generalizable embeddings that perform well on multiple
downstream tasks, each with significantly different domain data.

Given the complexity and size of minbert’s neural architecture, significant compute would be needed
to run a series of targeted experiments to determine which changes, if any, are effective. Given the
short duration of this academic project (i.e., <4 weeks) both time and compute create additional
challenges.

2



3 Related Work

“BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers” Devlin et al. (2018). The pre-trained BERT
can be used for a variety of downstream tasks. Such tasks can be accomplished by adding a task (or
multi-task) head on top of BERT, to create a task (or multi-task) output layer.

To better ensure success in the downstream tasks, one would either enhance the task layer or make
the embeddings from BERT more robust. Such enhancements can be incorporated at either the
pre-training stage (i.e., making the embeddings more robust) or the fine-tuning stage. Later in this
document I discuss which enhancements I experimented with. In this section, I provide a cursory
background on the motivations for experimenting with specific pre-training or fine-tuning approaches.

Researchers Sun, Qiu, Xu and Huang Sun et al. (2020) provided an overview of various approaches
to fine-tune BERT for text classification downstream tasks. The contributions of their work include:

1. The authors proposed a general solution to fine-tune a pre-trained BERT:
• Further pre-train BERT on within-task training data or in-domain data (see Figure 1),
• Fine-tune BERT with multi-task learning objectives and data,
• Fine-tune BERT for a specific task.

2. The authors investigated pre-processing of text methods, layer selection, layer-wise learning
considerations and low-shot learning problems

Figure 1: General Ways for fine-turning BERT

Their work introduced some very good ideas on practical considerations for improving minbert on
the given tasks. Unfortunately, given the short (<4 weeks) amount of time and compute resources,
I decided it was more prudent to be tactical and focus my efforts largely around pre-training on
multi-task data, and some straight forward approaches to fine-tuning (impacting relatively more of
the task layer for at least 2 of my downstream tasks).

Reading the work of Reimers and Gurevych in their development of Sentence-BERT (SBERT)
Reimers and Gurevych (2019) they achieved success computing similarity scores between embed-
dings for each of two source sentence inputs. Though the authors incorporated a siamese network
architecture, their work did show strong success with using a similarity measure like cosine similarity.
As such, I chose to use a similar concept for the paraphrase and semantic text similarity downstream
tasks of my project. Additionally, their work also motivated me to fine-tune using a cosine embedding
loss function.

Figure 2: Computing Similarity Scores in SBERT during Inference
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4 Approach

Base Transformer Model. The base model contains 12 Encoder Transformer Layers each consisting
of multi-head attention, followed by an additive and normalization layer with a residual connection, a
feed-forward layer, and a final additive and normalization layer with a residual connection. I added
three prediction heads on top of the same base embedding model; one prediction head for each
downstream task.

Sentiment Analysis. For sentiment analysis, the downstream task was formulated as a text classifica-
tion problem. Using the final minbert embedding, which is the hidden state of the [CLS] token, I
added a classification head composed of a linear layer and a dropout layer. The linear layer is based on
768 neurons, plus a bias neuron, and 5 output units (one for each sentiment class: negative, somewhat
negative, neutral, somewhat positive and positive). The dropout layer is used as a regularization
method to reduce overfitting. A dropout probability of 30% was used. Using a dropout layer could
result in a lower training performance metric value, but should allow better generalization to any
holdout development sets. During training I used cross entropy loss as the loss function. An argmax
is applied to the logits from the linear classifier to get the ultimate sentiment prediction.

Paraphrase Detection. For paraphrase detection, the downstream task was formulated as a binary
classification problem. The cosine similarity between the embeddings of the two given phrases is
calculated and then passed to a sigmoid function returning probabilities for yes (i.e., the phrases
are paraphrases) and no (i.e., the phrases are not paraphrases), providing the ultimate paraphrase
detection prediction. During training I used binary cross entropy loss as the loss function.

Semantic Textual Similarity. For semantic textual similarity, the downstream task was formulated
as a continuous regression problem. The cosine similarity between the embeddings of the two given
phrases is calculated. During training I used cosine embedding loss as the loss function.

Enhancements to the base architecture and extensions to the training process (pre-training and
fine-tuning) are discussed within the “Experimental details” section.

5 Experiments

5.1 Data

5.1.1 Data for Sentiment Analysis

I used an excerpt of the Stanford Sentiment Treebank (SST) dataset. The original dataset consists
of 11,855 single sentences extracted from movie reviews. The dataset was parsed with the Stanford
parser and includes a total of 215,154 unique phrases from those parse trees, each annotated by 3
human judges. Each phrase has a label for the following:

1. Negative
2. Somewhat Negative
3. Neutral
4. Somewhat Positive
5. Positive

The labels previously described represent varying levels of positive, negative, and neutral affective
states. Below I provide a distribution of the train and validation split, along with a distribution of the
composition of labels.

Figure 3: Stanford Sentiment Treebank Data Distribution
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Note the presence of 5 affective states versus 2 states (Negative and Positive) or 3 states (Negative,
Neutral and Positive).

5.1.2 Data for Paraphrase Detection

I used the Quora dataset containing question pairs in training for Paraphase Detection. Below I
provide a distribution of the train and validation split, along with a distribution of the composition of
labels.

Figure 4: Quora Data Distribution

Note the data imbalance between “No” and “Yes”.

5.1.3 Data for Semantic Textual Similarity

I used the provided SemEval STS Benchmark dataset in training for Semantic Textual Similarity.
Below I provide a distribution of the train and validation split, along with a distribution of the
composition of labels.

Figure 5: SemEval STS Data Distribution

Note the slight data imbalance for the last STS label compared to the other labels.

5.2 Evaluation method

The primary evaluation approaches:

• Accuracy for Sentiment Analysis and Paraphrase Detection. (TP = True Positive, FP =
False Positive, TN = True Negative, FN = False Negative)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

• Pearson Correlation for Semantic Textual Similarity.

r =

∑
(xi − x̄) (yi − ȳ)√∑
(xi − x̄)

2
(yi − ȳ)

2
(5)

5.3 Experimental details

5.3.1 Performance Enhancement Strategy

To better ensure success in the downstream tasks, one would either enhance the task layer or make
the embeddings from minbert more robust. Such enhancements can be incorporated at either the
pre-training stage (i.e., making the embeddings more robust) or the fine-tuning stage (i.e., enhancing
the downstream task prediction heads). As a tactical strategy (given the short timeframe to work
on the project) I focused primary on further pre-training of BERT, but also explored approaches for
fine-tuning.
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5.3.2 Further Pre-Training - Masked Language Model

To enhance the quality of the word embeddings, I implemented a masked language objective which I
used to further pre-train minbert. I started with an existing pretrained bert model (called “bert-base-
uncased”), and further pre-trained using the the downstream multi-task training data.

This process masked 15% of the training data (excluding PADDED and MASKED tokens), attempted
to predict the masked data, then updated the weights and embeddings based on the cross entropy loss
function. This provided a significant boost to the quality of the embeddings. The masked language
objective provided the most impactful boost of all of the performance enhancement experiments. I
included an excerpt of my masked language implementation in the appendix.

5.3.3 Fine-Tuning - Cosine Embedding Loss

The cosine embedding loss measures the loss given input tensors x1 and x2 and a tensor label y with
values 1 or -1. This is used for measuring whether two inputs are similar or dissimilar, using the
cosine similarity, and is typically used for learning nonlinear embeddings or semi-supervised learning.
This was used during fine-tuning of the semantic text similarity downstream task.

x =

[
x1

x2

]
(6)

cosine_embedding_loss (x, y) =
{
1− cos (x1, x2) , if y = 1

max (0, cos (x1, x2)− margin) , if y = −1
(7)

where −1 ≤ margin ≤ 1, but 0 ≤ margin ≤ 0.5 is often suggested.

5.3.4 Learning Rate Schedule

Instead of using a static learning rate, and though the AdamW optimizer does have some adjustment
to the learning rate, I added an exponential learning rate decay scheduler to the optimizer.

learning rate0 = 0.001 (8)
gamma = 0.96 (9)

learning rateepoch = learning rate0 ∗ gammaepoch (10)

Figure 6 provides a visual illustration of the exponential decay schedule.

Figure 6: Exponential Decay Learning Rate
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5.3.5 Hyperparameter Tuning

I employed a standard grid search for hyperparameter tuning. But I did not change the number of
layers in the model architecture nor the number of hidden nodes.

learning rate = 0.001 for pre-training (11)
learning rate = 0.0002 for fine-training (12)
learning rate = 0.0003 (13)

for pre-training using masked
language

gamma = 0.96 (14)
for the exponential learning
rate decay schedule

batch size = 64 (15)

5.3.6 Experimentation Process

The enhancements and extensions previously described were the ones where I observed positive
impact to performance. There were some other experiments performed that either lowered predictive
performance or provided no additional benefit, and hence were not retained.

Mapping Cosine Similarity to Discrete Classes. I attempted to statically map the cosine similarity
score to varying levels of similarity classes for semantic text similarity.

logit =



0, if similarity < 0.16667

1, if similarity < 0.33334

2, if similarity < 0.50001

3, if similarity < 0.66668

4, if similarity < 0.83335

5, otherwise

I also attempted to statically map the cosine similarity score to varying levels of yes / no for paraphrase
detection:

logit =
{
0, if similarity < 0.5

1, otherwise

5.4 Results

The completed base implementation achieved a 0.385 accuracy, 0.375 accuracy and 0.280 correlation
respectively (overall score of 0.347) on holdout datasets of the aforementioned tasks.

After further pre-training on task specific data by training on a masked language model objective,
fine-tuning using cosine embedding loss, applying a learning rate decay schedule, and hyperparameter
tuning, my final model achieved:

• 0.520 accuracy for the sentiment task

• 0.583 accuracy for the paraphrase detection task

• 0.528 correlation for the semantic text similarity task

The final model achieved an overall average score of 0.589. The following table displays various
experiments performed and their measured performance:
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Figure 7: Experimental Results Summary

The results are inline with my expectations because:

(a) There is a significant increase in performance when the masked language objective was
applied to further pre-train minbert. Such an objective helps minbert understand relationships
between words.

(b) Applying a learning rate schedule allows the step size to change, effectively decaying
over time. Lowering the step size in this way can improve both convergence and model
performance.

(c) None of the experiments (due to time constraints) incorporated balanced data, additional do-
main data, nor a combined loss function (aggregating loss gradients of the three downstream
tasks). As such, I expected a ceiling on performance. These limitations are further discussed
later within the “Limitations” section.

6 Analysis

6.1 Data Imbalance and Performance Distributions

The Stanford Sentiment Treebank dataset for sentiment was generally balanced across the classes
(i.e., Negative, . . . , Positive). However, I observed high imbalance in the Quora dataset for paraphrase
detection. There was some imbalance in the SevEval STS dataset for semantic textual similarity, but
nothing substantial.

Figure 8: Imbalanced Data Distributions

Performing an error analysis to understand whether the distribution of predictions may have some
correlation with the imbalance in the training data. Take for example the Quora dataset, referring to
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the data distribution described earlier we see that the “no” class makes up 62% of the labeled data. A
distribution of the model predictions (refer to Figure 11) shows that majority of the predictions for
paraphrase detection are also “no”. The optimization in the training with a single objective function
will favor best predictions on average, which can get influenced with extremely class imbalance.

Figure 9: Accuracy Distributions

6.2 Training Loss Curves

One of the extensions included the addition of a masked language objective to help minbert better
understand relationships between words inorder to boost the quality of the embeddings. In Figure
11, I provided the loss curve of minbert’s pre-training using the masked language model (based on a
learning rate of 0.0004). Early on during the training there is a steep drop in loss before beginning to
flatten out, signaling that the language model is better understanding the domain specific wording.

Figure 10: Masked Language Pretraining - Loss Curve

6.3 Overfitting

During finetuning I collected accuracy measurements of predictions on training and validation data.
I observed a significant increase in accuracy for the training, but little variance in changes to the
accuracy on validation data. This is likely a visual indication of severe overfitting. Please refer to
Figure 11:
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Figure 11: Plot of Training Data vs Validation Data Accuracy

7 Conclusion

7.1 Limitations

My implementation does not use a combined loss approach. Model iterations are saved based on
individual downstream task performance during training. This limitation places a ceiling on the
overall performance that could be achieved with this model. By combining the losses of individual
downstream tasks during fine-tuning the implementation would be closer to supporting true multi-task
learning.

Another limitation is that my implementation lacks regularized optimization, specifically in the loss
function. As a result the implementation has increased chances of overfitting.

7.2 Possible Extensions

There are a number of potential extensions not explored in this project. Below are some additional
things to be explored in future work on this project:

(a) Down-sampling to get more balanced training datasets across the task domain datasets. For
example, the number of training records for each class / category of each task domain dataset
could be down-sampled to be 900 records; similar remarks to the validation records but with
130 records.

(b) Fine-tune the model using Multiple Negative Ranking Loss. Such an approach would
minimize the distance between similar training data records and maximize the distance
between dissimilar training data records.

(c) Incorporation of regularized optimization in the loss functions, such as smoothness-inducing
regularization and bergman proximal point optimization.

(d) Pre-train using Next Sentence Prediction for the paraphrase detection downstream task. I
included an excerpt of my next sentence prediction implementation in the appendix.
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A Appendix (optional)

A.1 Masked Language Model (MLM) Code
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A.2 Next Sentence Prediction (NSP) Code
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