
Optimizing minBERT on Downstream Tasks Using
Pretraining and Siamese Network Architecture

Stanford CS224N Default Project

Edwin Pua
Department of Computer Science

Stanford University
puaedwin@stanford.edu

Abstract

BERT is a remarkably powerful sequence-to-sequence model built on top of a
transformer architecture that can output descriptive vector embeddings for sen-
tences. In this paper, I plan to build on top of BERT and optimize BERT for three
tasks - sentiment analysis, paraphrase detection, and similarity recognition between
sentence pairs. To do so, I implement a Siamese-inspired network architecture, use
back translation to augment the datasets, use SMART regularization, and pretrain
BERT. In particular, the Siamese architecture and BERT pretraining were most
effective at increasing performance in all three tasks.

1 Introduction

Due to the advent of the transformer model, multitask transfer learning on natural language processing
tasks has exploded in popularity. Specifically, when models like Bidirectional Transformers for
Language Understanding, or BERT for short, are trained to, for example, output the sentiment of a
sentence as positive or negative, this knowledge that BERT is retained and can adapted for other tasks,
like language translation and text summarization. In fact, we’ve seen that BERT smashed records
on General Language Understanding Evaluation (GLUE) performance tasks and improve the record
accuracy on datasets MultiNLI and SQuAD. [1]

This paper aims to explore ways to adapt BERT to three different tasks - sentiment analysis of a
sentence, paraphrase detection between sentence pairs, and similarity recognition between sentence
pairs. In other words, how can BERT and extensions of BERT be trained for, say, sentiment analysis,
then transfer that knowledge for paraphrase detection and similarity recognition.

My approach involves refining BERT through a combination of modern techniques, including the
implementation of a Siamese-inspired network architecture, dataset augmentation via back translation,
integration of SMART regularization, and BERT pretraining. Through meticulous experimentation, I
explored the efficacy of these methodologies, particularly highlighting the significant performance
boosts achieved by the Siamese architecture and BERT pretraining across all targeted tasks.

2 Related Work

Because my extensions concern the Siamese network architecture, SMART regularization, and BERT
pretraining, which I will go into more detail later, here are some papers that inspired the direction I
took for multitask learning:

2.1 Pretrained Language Models

Devlin et al. introduced BERT, a transformer-based model pretrained on large amounts of unlabeled
text using masked language modeling and next sentence prediction [1]. This has allowed BERT to
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capture contextual information and semantic representations of text, which is precisely what enables
transfer learning across various downstream tasks.

2.2 Siamese Network Architectures

Siamese network architectures have been widely used in tasks involving similarity assessment, such
as paraphrase detection and sentence similarity recognition. Reimers and Gurevych introduced
SBERT, which produces sentence embeddings that can detect semantic similarity between pairs of
sentences [2].

2.3 Regularization Techniques

Regularization techniques are essential for preventing overfitting on training data and improving
model generalization. SMART (Structured Model-Aware Regularization Technique) proposed by
Jiang et al. introduces regularization based on task-specific losses [4]. SMART regularizes models by
penalizing the model for having overly complex classification boundaries, which enhances robustness
and generalization performance.

3 Approach

3.1 Baseline

For the baseline minBERT model, I implemented the multi-head attention layer of the transformer,
coded the architecture for a single layer of the Bert model, defined the forward function of the
BertSentimentClassifier, and implemented the step function of the Adam optimizer using momentum.

For the multi-head attention layer, I matrix multiplied the batches of key and query vectors, normalized
by the square root of the size of the attention head, added the mask so that the padding tokens are not
considered when calculating attention scores, and softmaxed across the dimension corresponding to
each token, so that each key vector has a certain attention score probability associated with it, and all
probabilities sum to one. Then I matrix multiplied by the value vectors to get the scaled dot product
attention for one head - each head is then concatenated together.

The output of the multi-head attention layer is passed into a linear layer (i.e. multiplied by WO).
Dropout and a residual connection are applied to it before being normalized and passed into a
feed-forward network (which is a linear layer followed by ReLU/GELU). This output is followed by
yet another linear layer, dropout, residual connection, and normalization.

The forward function of the BertSentimentClassifier simply calls forward once on the BERT model,
then the corresponding pooler output has a linear layer and dropout applied to it.

The Adam optimizer is implemented exactly as described in the handout, including bias-corrected
first and second moments for a rolling average momentum and weight decay as regularization.

To implement the baseline MultitaskClassifier, I first implemented baseline versions of each classifi-
cation layer. For instance, for the sentiment layer, I passed the given sentence through BERT to obtain
its embedding, then passed that into a hidden layer and linear layer to obtain one of five different
sentiment classes, with ReLU for nonlinearity and dropout for regularization. For the similarity and
paraphrase layers, I passed both sentence one and sentence two through BERT to obtain the pooler
output of their embeddings u and v, then concatenated u and v together and passed them through a
hidden layer followed by a linear layer to obtain a logit, also with ReLU for nonlinearity and dropout
for regularization. In the case of the similarity classification layer, I bounded the output of the final
layer between 0 and 1 by applying a sigmoid, then multiplied that result by 5 to get a float between 0
and 5.
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Figure 1: Sentiment Pipeline (Top) and Paraphrase/Similarity Pipeline (Bottom)

Because the output label for the semantic textual similarity task is a float between 0 and 5, I used
mean square error loss. Because the paraphrase output label is a float of either 0 or 1, I used binary
cross entropy loss with logits. Because the sentiment classification outputs one of five different
sentiment classes, I used cross entropy loss.

3.2 Extension 1 - Siamese Architecture

I then improved upon the similarity and paraphrase layers by taking inspiration from the Siamese
BERT network architecture by Reimers and Gurevych, modifying the input to both of these layers to
be (u, v, |u− v|) rather than just (u, v). [2]

Figure 2: Updated Hidden Layer Input to Paraphrase/Similarity Pipeline

3.3 Extension 2 - Bigger Classification Architecture

To bring training loss down, I decided to increase the number of hidden layers from one to two for
the paraphrase and similarity classification layers. My reasoning was that I would rather overfit my
training data than underfit my training data, because overfitting on training data can be corrected
through regularization techniques or additional training data. I chose not to increase the number
of hidden layers for the sentiment classification layer because even just a single hidden layer was
already overfitting on the training data.
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Figure 3: Increased Hidden Layers From One to Two for Paraphrase/Similarity Tasks

3.4 Extension 3 - Back Translation Augmentation

To help drive validation loss down, I also tried to augment the Semantic Textual Similarity dataset
with back translation. For each sentence pair (s1, s2) in the training set of the STS dataset, I created
a translated sentence pair (s′1, s′2), where s′1 is equivalent to s1 translated to Chinese, then back to
English using EasyNMT. [3] My new training set consisted of four new sentence pairs for each
original sentence pair: (s1, s2), (s′1, s2), (s1, s′2), and (s′1, s′2). My reasoning was that back translation
would perhaps bolster the datasets with new sentence pairs that are distinct enough from their parents.

Figure 4: Quadrupled Size of Semantic Textual Similarity Dataset Using Chinese Back Translation

3.5 Extension 4 - SMART Loss Regularization

In addition to back translation, I also incorporated SMART Loss regularization for the sentiment
classification task by Jiang et al., which minimizes L(θ) + λSRS(θ) as opposed to L(θ), where
L(θ) = 1

n

∑n
i=1 ℓ(f(xi; θ), yi) (ℓ is mean square error loss, binary cross entropy loss with logits,

and cross entropy loss for the similarity, paraphrase, and sentiment, tasks respectively) and RS(θ) =
1
n

∑n
i=1 max||x̃i−xi||p ℓS(f(x̃i; θ), f(xi; θ)), where x̃i is a sampled perturbation of xi and ℓS is

chosen to be KL-divergence loss. [4]

3.6 Extension 5 - Additional Pretraining

Because I didn’t want to exclusively train the classification layers, I also unfroze the BERT layers
by setting each parameter ’requires_grad’ in the BERT model to True. This way, BERT would give
more robust and specialized embeddings for all three tasks.
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4 Experiments

4.1 Data

For the sentiment classification task, I use the Stanford Sentiment Treebank, which contains 8544
movie reviews in the training set, with five possible corresponding sentiment labels of 0 (negative) to
4 (positive). [5]

For the paraphrase classification task, I use the Quora Question-Pair dataset, which consists of 141506
question pairs in the training set and corresponding label of 0 (questions are not duplicates of each
other) or 1 (questions are duplicates of each other). [6]

For the similarity classification task, I use the SemEval STS Benchmark Dataset, which consists of
6041 sentence pairs in the training set and a corresponding label ranging from 0.0 (sentences are on
different topics) to 5.0 (sentences are equivalent and mean the same thing). The spectrum of possible
labels is all floats between 0 and 5. [7]

As mentioned earlier, I also created an augmented version of the SemEval STS Benchmark Dataset
using back translation, which contains 6041 × 4 sentence pairs in the training set.

4.2 Evaluation method

Like the leaderboard, we evaluate the sentiment and paraphrase tasks using accuracy and evaluate
the similarity task using Pearson correlation. Once Pearson correlation is normalized to be a number
between 0 and 1, we can take an unweighted average of the three evaluation metrics to get an overall
performance score.

4.3 Experimental details

I arbitrarily chose a learning rate of 1e-5, dropout probability of 0.5, batch size of 8, an ADAMW
weight decay of 1e-5, and a SMART regularizer weight of .02. The size of each embedding and the
hidden size for each the sentiment classification layer is 768. The hidden size and input size for the
baseline similarity/paraphrase classification layers is 768× 2 to accommodate (u, v), and that of the
Siamese classification layers is 768× 3 to accommodate (u, v, |u− v|). For each extension, I ran for
ten epochs - if after ten epochs, the dev accuracy/correlation was still exhibiting an upwards trend,
then I extended the training period to one hundred epochs.

To reiterate, almost all of the hyperparameters were chosen arbitrarily. In hindsight, I would’ve liked
to perform a random search over the possible hyperparameter combinations to see which exhibit the
best results.

4.4 Results

Sentiment (SST) Sentiment (CFIMDB)
Model Type Accuracy Benchmark Accuracy Benchmark
Pretrain 0.399 0.35 0.763 0.70
Finetune 0.529 0.45 0.938 0.90

Table 1: Dev accuracy of baseline minBERT model on sentiment classification
compared to autograder benchmarks.

First, I implemented the baseline minBERT and trained a sentiment classifier to verify that all moving
pieces were working properly (BERT model embeddings, AdamW optimizer, etc.) Because I pass
all autograder benchmarks, I can be reasonably confident that all code blocks were implemented
properly and start implementing extensions.
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Sentiment (SST) Paraphrase (Quora) Similarity (STS)
Extension Type Dev Accuracy Dev Accuracy Dev Correlation Overall Dev Score
Baseline Model After Finetune 0.411 0.375 0.201 0.428
After Siamese 0.411 0.687 0.398 0.599
After Hidden Layer Increase 0.411 0.694 0.448 0.610
After Back Translation 0.411 0.694 0.449 0.610
After SMART 0.414 0.694 0.449 0.611
After Unfreezing BERT 0.493 0.853 0.817 0.752

Test Accuracy Test Accuracy Test Correlation Overall Test Score
After Unfreezing BERT 0.494 0.858 0.794 0.750

Table 2: Dev and test accuracies after each milestone.
Extensions were implemented in the order shown.

The extensions I decided to implement were not chosen arbitrarily, but chosen in response to the
current dev scores and training losses. For instance, after implementing the baseline model, I noticed
the dev scores for the paraphrase and similarity tasks were comparatively low compared to the
sentiment task, so I implemented the Siamese network architecture changing the inputs to these
classification layers from (u, v) to (u, v, |u−v|). This led to a massive improvement in the paraphrase
task accuracy (.375 to .687) and similarity correlation (.201 to .398).

Next, I noticed that training accuracy was staying relatively close to the dev accuracy for the
paraphrase and similarity tasks. Since there wasn’t any overfitting on these tasks yet, I decided to
increase the number of hidden layers for the paraphrase and similarity classification networks from
one to two, leading to a small improvement in paraphrase task accuracy (.687 to .694) and similarity
correlation (.398 to .448).

I then tried to quadruple the size of the similarity training set with back translation to see if I could
improve STS score further, but this did not noticeably impact the similarity correlation (.448 to .449).
Although this is not listed in the table above, it is worth noting that the time per epoch increases from
about 20 seconds to a little over a minute.

Then, I noticed that there was a massive discrepancy between the dev accuracy on the sentiment
task (hovering around .4) and the training accuracy of the sentiment task (hovering around .8). So I
decided to apply the SMART regularization technique to the sentiment training process, but only got
a slight accuracy increase that may not even be attributable to SMART (.411 to .414).

Finally, I found a bug in my code that was always setting the BERT model parameters require_grad
to False, so I resolved this bug and unfroze the BERT layer parameters, yielding the biggest im-
provements to the overall dev score since the Siamese architecture implementation (.414 to .493 on
sentiment task, .694 to .853 on the paraphrase task, .817 to .858 on the similarity task).

Unsurprisingly, the final test scores were .494 accuracy on sentiment, .858 accuracy on paraphrase,
and .794 on similarity, for a final test score of .75, staying relatively close on all metrics to the final
dev scores.

5 Analysis

Initially, I was surprised that my sentiment dev accuracy (and everyone else’s dev accuracy on the
leaderboard) could never seem to exceed 0.6, but upon inspecting the sentiment dev set predictions,
I noticed how difficult many of the examples were. For instance, one such example movie review
is “Enormously entertaining for moviegoers of any age." Because the sentiment is positive but not
strongly positive, both the model and I would predict a label of 3 - however, the true label is 4. Many
of the erroneous dev outputs are off by one, because even though the emotional connotation might be
obvious, the strength of a given emotion can be hard to detect using just small blurbs. Not to mention
every critic and reviewer has their own personal rating scale with some rating stricter than others.
As such, one interesting idea for an extension would be to normalize each rating in the dev set by
subtracting it from the average rating of its respective reviewer, assuming that the number of reviews
is non-trivially larger than the number of critics (i.e. one critic is responsible for multiple reviews). A
rating of 3 from a strict reviewer has stronger positivity than a rating of 3 from a reviewer that gives
nearly everything perfect scores.
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Regarding the paraphrase task, many of the errors on the dev set are due to large amounts of word
overlap between the two questions, meaning they have similar sentence embeddings and have hard-to-
detect nuance. For instance, we see that the two questions “Is there any chance of medal for India in
Rio Olympics 2016?" and “How many medals is India expected to win at the 2016 Rio Olympics?",
we can see that the true label should be (and is) 0, but because there are a lot of similar words, the
model will output 1, even though theoretically the word “many" should have a high attention score
and therefore some non-insignificant influence on the embedding for that question.

Regarding my extensions - the likely reason why implementing a Siamese network architecture works
so well for the paraphrase and similarity tasks is because the smaller in magnitude or closer to the
zero vector that |u− v| is, the likelier that the two sentences in a sentence pair are similar.

Unfreezing the BERT layers intuitively increases performance as well, since backpropagation now
updates all parameters in the pipeline, not just the classification layers. In other words, unfreezing
BERT allows the model to adapt its parameters to specific characteristics of the sentiment, paraphrase,
and similarity tasks and learn task-specific nuances.

Regarding the extensions that didn’t work well - I speculate the main reason that augmenting the
STS dataset with back translation wasn’t very effective was because the translated pairs didn’t add
enough diversity to the training set. Consider the sentence pair (s1, s2) = (“The woman is slicing
tofu.”, “The woman is putting on lipstick.”). Here, the translated sentence pair using back translated
Chinese is (s′1, s′2) = (“That woman is cutting tofu”, “That woman’s wearing lipstick.”). Thus, s1
and s′1 probably have nearly identical sentence embeddings, and s2 and s′2 also have nearly identical
sentence embeddings. Thus, the four combinations of concatenated embeddings (u, v, |u− v|), (u′,
v, |u′ − v|), (u, v′, |u− v′|), and (u′, v′, |u′ − v′|) are all practically identical - it would be similar to
copy pasting each sentence pair three additional times in the training set.

I am still unsure why SMART did not work well on SST - I double-checked to see if I had a bug in
my code, but RS(θ) was returning nonzero values that weren’t suspicious. If I had to guess why:
let’s imagine that sentiment was determined by two features (x, y), and each data point was plotted
on a 2D plane. Then, the boundaries between sentiment classification would be 1D curves, separating
the data points into clusters. What SMART would theoretically do to these boundaries is smooth
them and make them less sharp - this mitigates overaggressive finetuning. If this regularization did
not help the dev accuracy, then it’s possible that the problem isn’t that the classification boundaries
are too sharp, but instead that the decision boundaries are placed inaccurately in the first place. This
is likely due to training data that isn’t fully representative of all possible sentiment movie reviews. If
this is the case, then the better way to reduce validation loss for SST would be to find a way to obtain
more data for the SST dataset.

6 Conclusion

One limitation of my project includes the lack of hyperparameter tuning using some sort of grid
or randomized search on the appropriate number of hidden layers, hidden layer size, learning rate,
batch size, etc., which would have probably allowed me to squeeze out some extra performance.
Another limitation is that I don’t know the efficacy of each extension in isolation, nor did I test
specific combinations of extensions. For instance, it’s possible that using SMART after unfreezing
BERT would’ve shown that SMART is potent after all. It’s also possible that there may be a specific
performance difference between the baseline model with all the extensions implemented and the
baseline model with only the Siamese and BERT unfreeze extensions implemented.

One avenue for future work: I noticed that unfreezing the BERT layers when training for the sentiment
classification task would lower the dev score for the paraphrase and similarity tasks, and the same is
true when training for other classification tasks. Thus, one way to improve the dev and test scores
would be to implement gradient surgery.

Despite all this, I’m happy to have learned about the power of Siamese network architectures on
similarity tasks, as well as the benefit of allowing gradient flow through all layers of a neural network
pipeline versus only the final classification layers. I’m also happy to have learned that SMART is not
a regularization panacea for all forms of overfitting, and that data augmentation using back translation
is limited in its success.
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