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Abstract

Nominal compounds (compounds consisting of two juxtaposed nouns), are par-
ticularly difficult for LLMs to understand. What makes them challenging is that
across the spectrum of nominal compounds, there exist such different relationships
between the two constituent nouns. Disentangling the relationship between the two
constituents is not trivially easy, but certainly can be reasoned through by a native
speaker. To this end, we are curious if LLMs are able to achieve the same degree
of logical semantic reasoning about these compounds as humans can. We probe
the ability of a suite of language models to understand the relationship between
constituent nouns in various nominal compounds, finding that fine-tuned LLMs
are able to achieve remarkable success. Furthermore, we find that the addition of
multimodality does not help with this reasoning task, suggesting that visual cues,
at least in the current LLM regime, do not aid logico-linguistic reasoning.

1 Key Information to include
• External Mentors: Ryan A. Chi, Ethan A. Chi
• External Collaborators (if you have any): N/A
• Sharing project: No
• Team contributions: The work for this project was fairly split and divided evenly. Nathan

Chi played a major role in conducting fine-tuning experiments on BERT and BERT infilling,
while Elijah Song focused on fine-tuning GPT models, working on CLIP, and calibrating
baseline approaches. Both partners contributed equally to this report.

2 Introduction

Large language models (LLMs) are impressively fluent in a variety of textual domains. However, it is
not always clear whether said fluency is simply a mirage of understanding — so-called "stochastic
parroting" (Bender et al., 2021) — or actual semantic comprehension. For this reason, there is strong
collective interest in the NLP research community toward developing benchmarks (Srivastava et al.,
2023; Liang et al., 2023) to gauge LLMs’ aptitude for reasoning tasks, the successful completion of
which involves more than merely rote memorization.

It is known in the linguistic literature that identifying the relation between the two nouns in a
compound requires more than simply first-order semantic comprehension. Consider the phrase
hymnbook. It is probably straightforward to a native speaker that hymnbook → book THAT HAS
hymn, but it would be amiss to generalize this to a broadly applicable rule. For instance, library book
→ book IN library (not book THAT HAS library).

This variation in meaning is belied by the uniformity of the nominal compound’s surface structure
(Chomsky 1957). On this note, Bauer and Tarasova (2013) describe nominal compounds as exhibiting
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"superficial neutralization of semantic relationships." That is, the relationship between two nouns in a
nominal compound can be wildly different, even though most nominal compounds basically look the
same. In total, the Tratz and Hovy (2011) classification scheme groups relationships between the
two nouns in nominal compound bigrams (N1 and N2) into 37 mutually exclusive categories and 12
over-arching nominal groups, which are included in 4.

We posit that much like any human speaker would need more than a passing understanding of
language to semantically unpack these compounds, any computational linguistic system (including
an LLM) will need more than statistical rules to successfully complete this task. To this end, we
implement a set of neural techniques to determine with LLMs are able to achieve human-like levels
of understanding. We probe the ability of a broad suite of language models to understand the
relationship between component nouns, finding that fine-tuned LLMs are able to achieve reasonable
success. Furthermore, we find that the addition of multimodality does not significantly impact model
performance — and is no more effective than off-the-shelf infilling.

3 Related Work

In the past, work primarily focused on compositionality analysis of noun compounds: or, in other
words, to what extent noun compounds can be expressed as a function of their constituent nouns
(Reddy et al., 2011; Biemann and Giesbrecht, 2011). This body of early work was supplemented
by Jana et al. (2019), which leveraged Poincaré embeddings to represent noun phrases. Yet other
work focused around the related task of literality prediction — how closely does the meaning of
a given compound match the literal composite of its component nouns? Furthermore, past work
noted that infilling templates with pre-trained masked language models performed well for generating
paraphrased versions of a nominal compound (Ponkiya et al., 2020). In particular, Ponkiya et al.
(2020) find that reframing the task of identifying relationships between nominal compounds as both
structured infilling and semi-structured free paraphrasing achieves effective results.

In terms of classifying challenging compound nominalizations, Lee et al. (2022) serves as a major
step forward. Building upon their past work in Lee et al. (2021), they present an expanded dataset of
annotated noun-modifier compound nominalizations — and their corresponding relationships, which
they characterize as three basic categories (NOUN, ADVERB, and NIL). They also propose a preliminary,
unsupervised approach to apply graph-based features to (1) classify relationships between nouns and
modifiers and (2) select the most accurate paraphrases. Lee et al. (2022) address the twin tasks of
paraphrasability prediction (i.e., whether or not a compound normalization is paraphrasable) and
paraphrase generation. Their primary approach hinges on graph-based features: they apply the
Abstract Meaning Representation (AMR) approach to represent sequences of text as a graph, where
nodes represent tokens and edges represent inter-token relationships.

In terms of datasets, there is a marked lack of meaningful datasets of nominal compounds, the largest
of which is Tratz and Hovy (2011). Despite being the only large dataset for the subject, Tratz and
Hovy (2011) presents several difficulties chiefly owing to its extremely complex and idiosyncratic
typology, which does not clearly match subjective opinions (as described in section 5.1). Other
datasets include Ponkiya et al. (2018), a dataset of 2,600 examples of nominal compounds classified
by Levi (1978) taxonomy. However, this dataset was inaccessible, even after contacting the authors
to clarify. Additional datasets in non-English languages also include Wilkens et al. (2017), which is a
Portuguese-language nominal compound compilation.

4 Approach and Experimental Details

4.1 Task Definition

We define the nominal compound disambiguation task as follows:

Given a noun compound, what category is the relationship between the two nouns?

where ncategory = 10. The distribution over categories is as follows:

purpose 0.238050
objective 0.195595
topical 0.090336
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attribute 0.081797
causal 0.078366
containment 0.078046
loc_part_whole 0.076530
complement 0.067353
owner_emp_use 0.062485
time 0.031442

demonstrating that the plurality-class baseline achieves an accuracy of 23.8%.

Ambiguity In practice, many categories are highly ambiguous, and some entities could fall into
multiple categories. (For example, “gold mine” could conceivably fall into containment (gold is
contained in the mine) or complement (gold is mined)). However, because our dataset is only labeled
for one category at a time, we frame the problem as a multi-way classification task.

Brief category distributions:

‘attribute‘: N1 describes N2, or N2 describes N1.
‘causal‘: N1 caused N2, or N1 performed N2, or N1 is used to perform N2.
‘complement‘: The phrase can be rephrased as N2 of N1.
‘containment‘: N2 contains N1
‘loc_part_whole‘: N1 is the location where N2 is from or occurs.
‘objective‘: N1 is the grammatical object of N2.
‘owner_emp_use‘: N1 is the owner, experiencer, or employer of N2.
‘purpose‘: N1 is the purpose of N2 (N2 performs N1; N2 is used to visit/use/propel/conserve/modify/oppose N1)
‘time‘: N1 is the time when N2 occurs.
‘topical‘: N1 is the topic of N2 (N2 is interested in N1; N2 observes N1; N2 depicts N1).

4.2 Method: Infilling

A masked language model is inherently a classifier. We exploit the fact that the problem has inherent
structure – i.e. the category is ‘causal‘ if N1causesN2 – and compute score(category) as the masked
language modelling score Salazar et al. (2020): P (wordcategory|N1[MASK]N2). In particular:

1. Input: n2 n1

2. Template: In the phrase n2 n1, n2 [MASK] n1. (and reverse, with n1 [MASK] n2).

3. We extract normalized softmax probabilities for each of the 10 classifications described in
(Tratz and Hovy, 2011).

4. We normalize probabilities as z-scores, then choose the classification and associated order
with the highest resulting score.

Note that we use bert-base-cased for all experiments.

4.3 Method: prompting

We conducted a zero-shot baseline for both GPT-3.5 (gpt-3.5-turbo-0125) and GPT-4
(gpt-4-0125-preview), using temperature = 0 (as we are only interested in the MLE response).
We prompt GPT (Brown et al., 2020; Achiam et al., 2023) under a zero-shot environment to generate
the most probable baseline predicted relation between n1 and n2.

4.3.1 Fine-tuning BERT

We fine-tuned BERT (Devlin et al., 2018) by adding a linear classification head. We trained on the
entire test set for 10 epochs with early stopping on an associated validation split provided by the
dataset authors.

Model classes We examined tested varying model sizes of BERT and RoBERTa (an optimized
BERT model which adopts a larger training dataset and modifies the training process and objective to
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improve performance). Upon experimentation, we found that one linear layer was adequate enough
for a sufficiently discriminative classification head.

We implemented BERT finetuning in PyTorch, and the model was trained on a single Tesla T4 for
45 minutes per model. Our best-performing BERT model was trained after 6 epochs. We utilize a
learning rate of 5e−5, ϵ = 1e−8, and a batch size of 32 for more efficient training.

4.3.2 Fine-tuning GPT

We fine-tuned gpt-3.5-turbo-0125 for one epoch on the entire train set, and fine-tuned with the
validation set. We implemented fine-tuning GPT with OpenAI’s API.

4.3.3 CLIP

We initially hypothesize that evaluating with an additional modality is likely correlated with an
increase performance: to this end, we evaluate a zero-shot CLIP model on the Tratz-coarse dataset
with images scraped on Google Search (as described). The zero-shot CLIP model was conducted
using the scraped images from the web and the labels ranked by CLIP consisted of a description of
each category as applied to each example in the testing set. The CLIP model returns a image-text
similarity score for each of the labels, where a larger score indicates that the image and the text are
more similar to each other. Softmax normalization was applied to this output of the CLIP model and
the category with the largest softmax probability was selected as the CLIP model’s answer.

5 Experiments

5.1 Data

Dataset Train Validation Test
Modified Tratz-coarse 12,531 842 3,335
Scraped images N/A N/A 3,335

Table 1: Dataset details

We evaluate on a modified version of the Tratz and Hovy (2011) dataset, which contains 19,158
nominal compounds classified into two levels of specificity: 12 distinct coarse-grained relations
(Tratz-coarse) and 37 distinct fine-grained relations (Tratz-fine). Notably, the Tratz and Hovy
(2011) is highly subjective — the task itself of classifying noun compounds into a fixed number
of semantic relations is quite noisy (Shwartz, 2019; Shwartz and Waterson, 2018). Past analytic
work on Tratz and Hovy (2011) suggested that a number of noun compounds fit into more than just
one category, with multiple relations in Tratz-fine overlapping in meaning. This lack of quality
is mainly attributable to the use of crowd-sourced data. Due to the lack of other comparable data,
we train and evaluate on Tratz and Hovy (2011). However, to account for this irregularity, we only
evaluate on the Tratz-coarse dataset, under the assumption that grouping such arbritrarily defined
data groups together would result in more realistic performance.

Furthermore, we remove the “cause” and “other” categories due to their relatively small numbers in the
train set and the difficulty in defining the relations, reducing the size of our modified Tratz-course
dataset to 16,708. We follow the data splits from (Shwartz and Waterson, 2018), where the data
is split in a 75:20:5 train-test-validation ratio. The dataset was retrieved from the repository for
(Shwartz, 2019), available here1. The categories we used can be found in the Appendix.

For our multimodal CLIP approach, we utilized Google’s Custom Search JSON API (Google) to
scrape images corresponding to each nominal compound in our test set. We performed manual review
of the images to ensure that the scraped images were relevant to the task at hand, and stored a list of
the relevant image URLs with each example in the modified Tratz-coarse to form our Multimodal
Image Dataset.

1https://github.com/vered1986/NC_embeddings
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5.2 Evaluation method

Given that this is a classification task, we evaluate using accuracy alone. We considered manually
annotating the dataset for multiclass classification (as nominal compounds can fall into multiple
categories as described above). However, we ultimately abandoned this idea, due to the extensive
human labor in re-classifying 16,708 examples.

5.3 Results

Method Test Accuracy Dataset
BERT Infilling 0.1363 Modified Tratz-coarse
Plurality Baseline 0.2381 Modified Tratz-coarse
GPT 3.5 Baseline 0.2504 Modified Tratz-coarse
GPT 4 Few-Shot Completions Baseline 0.3748 Modified Tratz-coarse

GPT 3.5-Turbo Few-Shot Completions 0.2834 Modified Tratz-coarse
GPT 3.5-Turbo Fine-Tuned 0.7010 Modified Tratz-coarse
BERT Fine-Tuned 0.8824 Modified Tratz-coarse
BERT Fine-Tuned 0.8824 Modified Tratz-coarse
CLIP 0.1364 Modified Tratz-coarse + scraped images

Table 2: All accuracies reported test set.

We find that fine-tuning LLMs achieve significantly better performance than our baseline approaches
on nominal compound classification. Fine-tuning BERT was particularly effective at this task,
achieving a maximum performance of 88.24% on the test set (an absolute increase over the GPT-
4 baseline of approximately 51%), which was significantly better than we expected. The BERT
model’s strong performance is likely due to its bidirectional encoding nature, which enables a better
understanding of context — especially in this task, when both nouns are arguably equally important.

Notably, fine-tuning BERT performed better than fining-tuning GPT 3.5 on all labels in the dataset
– often by large amounts. For example, fine-tuned BERT predicted nominal compounds labeled
“Attribute” correctly 82.6% of the time, while fine-tuned GPT 3.5 only classified 33.7% of these
compounds correctly. Importantly, our BERT architecture also relied directly on training a classifier
on top of BERT’s hidden state representations — this direct use of a classification head may have
meant that the model was more adapted to the downstream task than GPT. Furthermore, we postulate
that classifying on numerical labels (class labels) as in BERT effectively blinded the categories, which
may have reduced any unintentional bias associated with the class labels as in our GPT approach.

As expected, few-shot learning for GPT 3.5 only performed marginally better than the baseline
zero-shot approach, with test accuracies of 28.34% and 25.04%, respectively. This is likely due to
the fact that providing GPT with a few examples of nominal compound classification is unlikely to
enable the model to reason more strongly about these complex topics without an excessively large
number of examples, which would render the cost of experimentation prohbitively expensive.

We find that BERT infilling performs surprisingly poorly, despite prior work (Ponkiya et al., 2020)
suggesting otherwise. To this end, we hypothesize that the classification schema of the Tratz
taxonomy is not conducive toward multimodal classification — that is, rather than expressing nominal
compounds ("celebrity chef") as simple predicate-noun combinations ("chef IS celebrity"), the Tratz
taxonomy would classify it under a subjective and loosely defined broad category (attributive).

Ultimately, CLIP performed extremely poorly with a test accuracy of 13.64%, well below expectations
and below even the plurality baseline of 23.81%.

We hypothesize that the lack of improved results is likely due to the relative difficulty of expressing
complex concepts (particularly abstract ones) in images, making the calculating of image-text
similarity scores quite difficult. Images tend to represent simple, concrete nouns (take for example,
“apple”) but may not be able to effectively represent the ambiguous meaning of many nominal
compounds. The lack of ability for multimodal and image-based methods to analyze nominal
compounds is not surprising, however, as the human analysis of nominal compounds is one expressed
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Figure 1: Accuracy per Label

Figure 2: A confusion matrix from our fine-tuned BERT experiment, demonstrating that the model
often misclassifies a Causal relationship for Ownership, Employement, & Use and Objective relation-
ships.

mainly in text, not image. Perhaps a series of multiple images could be better represent a nominal
compound in a multimodal model, capturing greater semantic meaning.

Interestingly, CLIP performs at almost exactly the same accuracy level as BERT infilling, further
suggesting that including the image modality does not aid linguistic reasoning under the Tratz
taxonomy.

6 Analysis

In 2, we provide a confusion matrix of BERT nominal compound classifications. We see that BERT,
our best-performing model, tends to misclassify a Causal relation as a Objective or Ownership,
Employment or Use and Objective one. We posit this is due to the loosely defined nature of
the Causal relationship —- and Tratz’s taxonomic classifications, in general. There are, for example,
many objects that are likely to be both caused and possessed. This, paired with the fact that Tratz
only includes one category per nominal compound (despite multiple possibilities) which would result
in multiple “mis-classifications," at least quantitatively. Qualitatively, we find that a number of these
mixups are quite natural to a reader: for instance, “makeup artist" is classified as “causal" according
to Tratz, rather than “Objective" or “Employment." To a human reader, this seems objectively wrong
— and indeed, the BERT model falls to the same failure case. This failure can perhaps be seen as a
weakness of the Tratz dataset — more so than our architecture.
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Category Image-Text Similarity Score
Objective 30.5502
Causal 32.2299
Purpose 31.2561
Ownership, Employment, or Use 31.4049
Time 32.7364
Location and Whole+Part 31.7102
Composition and Containment 32.3126
Topical 31.7183
Complement 31.7183
Attributive and Equative 31.5940

Table 3: CLIP cosine similarity scores by category, for “living standard", bounded by 1 - 100.

Figure 3: An image that we scraped to compile our dataset, representing the abstract nominal
compound “living standard.”

The CLIP model tends to perform poorly with nominal compounds that represent abstract concepts.
For example, the abstract nominal compound “living standard” is classified by CLIP as Causal
(implying that “living” causes the “standard” in “living standard”) instead of as Complement, wherein
“living” describes the particular nature of the “standard” in “living standard.” This is likely due to
the fact that “living standard” is difficult to visualize as an image – indeed, the image-text similarity
score output of CLIP on this image is nearly identical for all of the labels, and the model’s selection
of “Causal” can be attributed to noise instead of reasoning.

In contrast, the CLIP model is able (at least to some extent) reason about concrete nominal com-
pounds. For example, the concrete nominal compound “police bus” is correctly classified by CLIP as
Ownership, Employment, and Use, where in the “police” are the users of the “bus.” The image-based
CLIP model works well on concrete inputs as opposed to abstract inputs, as expected, testifying to a
limitation of a multimodal approach when dealing with complex reasoning.

Figure 4: An image that we scraped to compile our dataset, representing the concrete nominal
compound “police bus.”
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7 Conclusion

We find that fine-tuned BERT achieves near-human results, with 88.24% accuracy, and conclude that
multimodal modeling does not present an appreciable advantage over pure language model. This is
likely due their struggles with reasoning about relations between two abstract nouns, which is far
less compositional (and thus straightforward). Some limitations with this work include the use of the
Tratz dataset, which is inherently limited due to its poor quality.
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A Appendix

Category Meaning Example
Objective N1 is the logical grammatical object of N2 biotechnology research
Causal N1 engaged in, provided, caused, justified, is a

means in the process of, or is used by N2

government figure

Purpose N2 performs, engages in, creates, obtains, mit-
igates, opposes, organizes, or has a purpose re-
lated to N1

labor market

Ownership, Employment, or Use N1 owns, experiences, uses, or receives from N2

or N2 works for N1

government technocrat

Time N2 exists, occurs during, or is created during N1 winter holiday
Location and Whole+Part N1 is the location where N2 is at or N2 is a part,

piece, or member of N1

water spider

Composition and Containment N1 composes, constitutes, or is contained in N2

or N2 specifies the amount of N1

stock portfolio

Topical N2 discusses, depicts, teaches, or contains info
related to N1 or N1 is the topic of N2

property deal

Complement N1 describes the nature or quality of N2 earth tone
Attributive and Equative N1 is or is an instance of N2, or N1 is an

adjective-like noun
core tradition

Table 4: Description of each category in our dataset according to Tratz and Hovy (2011), with an
example of each.
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