
Not-So-SMART BERT
Stanford CS224N Default Project

Eliot Jones
Department of Computer Science

Stanford University
eliot.jones@cs.stanford.edu

Abstract

Since their creation, BERT models have become the state-of-the-art for multiple
NLU tasks. One of the most common methods of evaluating BERT models is the
General Language Understanding Evaluation (GLUE) benchmark, from which
we have been tasked with utilizing and extending the BERTBASE model to
achieve high performance on three tasks: sentiment analysis, paraphrase detection,
and semantic textual similarity. This project performed experiments on multiple
configurations of models, and determined that achieving high performance on the
test leaderboard was best achieved with a simple, larger model.

1 Key Information to include

• Mentor: Soumya Chatterjee

2 Introduction

When the BERT (Devlin et al., 2019) model was first introduced as a method for solving natural
language understanding (NLU) tasks, it already outperformed then-current state-of-the-art models. In
the years since, there have been multiple enhancements to the BERTBASE model, which have made
further improvements upon the original model’s performance on NLU benchmarks.

The task at hand was to implement our own version of BERTBASE , and then adapt it to three
different NLU methods, which are a part of the GLUE benchmark. Those three tasks were sentiment
analysis using the Stanford Sentiment Treebank (SST) (Socher et al., 2013), paraphrase detection
with Quora Question Pairs (QQP) (Fernando and Stevenson, 2009), and semantic textual similarity
with the SEMEval STS dataset (Agirre et al., 2013). Each of these tasks have their own separate
challenges. Sentiment analysis requires the model to be able to tell between positive, negative or
neutral tones; paraphrase detection requires the ability to determine what groups of words convey
the same semantic meaning; and semantic textual similarity broadens the scope of textual similarity,
allowing for a range of five different determinations, from "not at all related" to "same meaning."

The above series of tasks present a challenge for the BERTBASE model, judging by baseline
performance. For example, the initial implementation of BERT , which was evaluated on the SST
dataset, as well as a separate movie review dataset, called CFIMDB. As outlined in section 5, baseline
versions of BERT found it quite difficult to accurately classify data from the SST dataset. As a
result, in the following parts of the project, we were required to make improvements to the baseline
model, in order to rank higher on a leaderboard.

Success for this project was determined based on the aforementioned leaderboard rankings. Plainly,
achieving a higher score on all three of the tasks resulted in a greater success than the alternative. As
a result, we had to be extremely results-oriented in our approach. Yet another factor was training
time, with finetuning more complex enhanced BERT models taking up hours at a time. In order
to combat compute and temporal restraints, at first our idea was to modify the architecture of the
BERT model, in order to utilize a more lightweight version during finetuning. However, it quickly

Stanford CS224N Natural Language Processing with Deep Learning



became clear that this method would not be feasible, since, as a baseline, reducing model size results
in a drop in accuracy.

After this revelation, our methods and approach (highlighted further in section 4), shifted to focus
completely on enhancing performance on the three datasets: SST, QQP, and STS. In the end, we
determined that a three-headed model, built on top of the ’bert-base-uncased’ version of BERTBASE ,
with two intermediate layers, resulted in peak performance, out of all of our experiments.

3 Related Work

Projects related to BERT would not be possible without Devlin et al. (2019)’s implementation of
the BERTBASE model. However, the current state-of-the-art results on the GLUE benchmark (and
by extension the SST, QQP, and STS datasets), are based upon much more than just a baseline model.
As a result, the overall goal of our implementation was to identify key areas of weakness during each
iteration, and determine ways to iteratively improve our model. As such, we took inspiration from
the implementations outlined in this section.

3.1 Cosine Similarity Finetuning

In their paper "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks," Reimers
and Gurevych (2019) suggest a method to compare the semantic similarity between sentences during
finetuning. Specifically, they discuss three different objective functions when it comes to predicting
semantic similarity: a classification objective function, a regression objective function, and a triplet
objective function, all of which are used with computed cosine similarities between sentences, after
utilizing a pooling operation on top of the outputs of the BERT models. With respect to our
implementation, this method was not introduced directly as a result of seeking targeted improvements.
However, it is an implementation which provided improvements upon the state-of-the-art at the time
of its publication, and made sense to include in our model as well.

3.2 Smoothness-Inducing Regularized Optimization

A quick evaluation of the current state-of-the-art techniques for achieving high performance on the
QQP and STS datasets yields the observation that Smoothness-Inducing Regularized Optimization
(SMART) (Jiang et al., 2020) is a critical part of any model which hopes to attain top scores. The
proposed method is a way to control model complexity during fine-tuning, which is an issue for
more advanced architectures. In order to do so, the authors introduce small perturbations into
the embeddings, and penalize large divergences or differences in model output, using either KL-
divergence or squared loss depending on task type (classification or regression). However, one
drawback with this method is extended training time and more computing resources, which has been
discussed as an important factor during this project.

3.3 Heinsen Routing

A similar examination of state-of-the-art techniques on the SST dataset leads to "An Algorithm
for Routing Vectors in Sequences" by Heinsen (2022). This algorithm attains number one status
on the SST 5 fine-grained classification task, which as seen earlier proves to be quite difficult for
BERTBASE . As a result, during our experimentation, it was in our best interest to attempt an
implementation utilizing Heinsen Routing, in order to improve model performance. The Heinsen
Routing algorithm is simply a modified version of expectation maximization, which when combined
with an updated version of BERT , RoBERTa, achieves peak accuracy on the task at hand. Similarly
to SMART, this method also introduces more model complexity and extended runtime.

4 Approach

In order to better contextualize the methods used in section 5 of this paper, we will first outline the
baseline model used for all experiments, and then discuss the different model architectures that were
utilized during the finetuning process. For the sake of simplicity, we will denote the three-headed
model built on top of BERTBASE as BERTMulti, in reference to the multitask classification task

2



it has been created for. Please refer to Devlin et al. (2019) for information on baselines outside of our
own experimental ones.

4.1 Initial Model

Our initial task was to implement our own version of the BERTBASE model architecture as described
by Devlin et al. (2019), and according to the skeleton code provided in the project description. Our
initial implementation of the BERT model utilizes embedding layers, 12 BERT encoding layers, and
a pooling layer, in order to use the pretrained BERTBASE embeddings to pass the sanity check.

Then, we implement the AdamW optimizer according to the algorithm provided in the project
description, as well as the "efficient" implementation used by Kingma and Ba (2017). Once these
methods have been completed, we run two instances of our basic BERT model, either pretraining
with frozen parameters or finetuning them, and compare our results to the provided baselines for the
SST and CFIMDB datasets. We then move on to implement the BERTMulti Model.

4.2 BERTMulti Model

The BERTMulti model is based upon the BERTBASE model, with an additional three heads, each
of which modifies the outputs from BERTBASE in order to better align with the tasks at hand. The
general model flow is outlined in Figure 1. In addition to the classical BERT architecture, the
BERTMulti model contains an additional intermediate layer, which is then followed up by a classifi-
cation layer, which outputs the logits required for the three tasks. Specifically, each intermediate layer
is formed by a series of mini-layers, with each mini-layer comprised of a linear activation, a GELU
function, and then a dropout layer. Once the embeddings have passed through the intermediate layers,
they are passed through a final linear layer, which outputs the logits.

For the sentiment prediction, since we only have one pair of a set of input ids and an attention mask,
in order to get predictions we run these through the BERTBASE model to get embeddings, then
through the intermediate layers, and then finally through the linear classifier. However, for both
paraphrase detection and semantic similarity, we are provided with two pairs of input ids and attention
masks, which results in a changed approach. For paraphrase detection, we first get the embeddings of
both sets of tokens corresponding to the two sentences in question, and take the absolute value of the
difference between these embeddings. After this has been calculated, we proceed as with sentiment
prediction. Similarly, for semantic similarity, we obtain the embeddings like we did with paraphrase
detection, normalize the two sets of embeddings, and then compute the dot product between them.
This process is identical to calculating the cosine similarity, as outlined by Reimers and Gurevych
(2019). These similarity scores are then passed through the intermediate and classification layers.

4.3 Finetuning

Since completing any pretraining using our model doesn’t update weights in any fashion, we made
the decision to exclusively perform finetuning using our model, in order to give ourselves the most
possible chances at achieving a high-performing model. Figure 2 describes the flow of our finetuning
loop, which utilized a multitask approach. Specifically, as visible in the figure, we perform multitask
classification, updating parameters based on the gradients accumulated across the three tasks. We
finetune on the selected batch of SST data, then QQP data, and then finally STS data, backpropagating
the task-specific loss each time before continuing to the next. For the SST data, we utilize pytorch’s
cross entropy as our loss function, for QQP the binary cross entropy with logits function, and for
STS we utilize mean squared error loss, which aligns exactly with Reimers and Gurevych (2019)’s
regression objective function. It is also during this loop that we investigated the integration of SMART
regularized optimization, in which we calculated perturbations of the embeddings from a given batch
sample and appended the loss to the original loss calculation. This will be discussed further in the
experiments section, as will our application of Heinsen Routing.

5 Experiments

This section contains the following.

3



Figure 1: Basic model flow

5.1 Data

The three datasets utilized for this project were, as mentioned above, the Stanford Sentiment Treebank
(Socher et al., 2013), the Quora Question Pairs dataset (Fernando and Stevenson, 2009), and the
SemEval Semantic Textual Similarity dataset (Agirre et al., 2013). For the SST dataset, we were
tasked with determining whether or not a sentence fell into one of the five categories: negative,
somewhat negative, neutral, somewhat positive, and positive. For the QQP dataset, our task was to
determine whether two sentences are paraphrases of each other (this was a binary decision, either
they were or they weren’t). Finally, for the STS data, we had to determine the strength of semantic
similarity between two sentences, ranging from 0 to 5. Note that unlike the previous two classification
tasks, this was a regression task.

5.2 Evaluation method

The SST dataset was evaluated based on accuracy, whether or not the predicted label matched the
true label. The same holds for the QQP dataset, where our label was matched against the binary
classification labels provided. Finally, for the STS dataset, we utilized Pearson correlation between
the predicted and true similarity scores.

5.3 Experimental details

We ran a total of seven experiments, with their details provided below. The general setup ran
finetuning with a learning rate of 1e− 05, 10 epochs, and SMART regularized optimization turned

4



Figure 2: Training loop

off. For each experiment below, please assume that there were no changes made to this setup unless
otherwise mentioned.

5.3.1 BERTBASE

We performed finetuning using a very simple extension of the BERTBASE , by simply calculating
the logit for each of the three tasks directly from the embeddings. This was a very crude baseline,
and utilized solely for that purpose.

5.3.2 BERTMulti

We then performed the same finetuning, using the BERTMulti model discussed above, and used the
results from this experiment as a more rigid baseline for the following experiments.

5.3.3 BERTMulti Parts 2, 3, and 4

While the original BERTMulti only utilizes one intermediate layer, as mentioned before consisting
of one Linear, one GELU, and one Dropout layer, we also ran experiments with larger models.
Specifically, we ran the same finetuning setup using 2, 3, and 4 intermediate layers, in an attempt to
achieve higher performance.

5



5.3.4 BERTMulti + SMART

Since it has been thoroughly noted that, as models have become more complex, they have needed
more and more regularization, we thought it would be useful to implement SMART regularization in
an effort to not only improve performance, but also to counteract increases in model complexity. This
experiment was only conducted using the baseline BERTMulti model, reasons for which will be
discussed further in the analysis section.

5.3.5 BERTMulti + Routing + SMART

This experiment utilized an adaptation of the BERTMulti model, which implemented a Heinsen
Routing layer instead of the intermediate layer for the SST task. Similarly to BERTMulti + SMART,
this was only attempted once, to be further discussed in the analysis section.

5.4 Results

The following table details our results on the dev set. The model that was submitted to the test
leaderboard was an implementation of BERTMulti with two intermediate layers, and will be referred
to as BERTMultiekj

to match the submission. BERTBASE′ here refers to the barebones version
of our multitask BERT that was built on top of the BERTBASE implementation. The subscript to
each version of BERTMulti denotes the number of intermediate layers used.

Model SST Accuracy QQP Accuracy STS Correlation
BERTBASE′ 0.349 0.628 0.526
BERTMulti1 0.495 0.870 0.799
BERTMultiekj

0.512 0.866 0.856
BERTMulti3 0.503 0.854 0.857
BERTMulti4 0.511 0.851 0.851
BERTMulti + SMART 0.504 0.836 0.691
BERTMulti + Routing + SMART 0.262 0.625 0.045

Table 1: Dev Results

Due to its highest average performance across the three separate tasks, BERTMultiekj
, or

BERTMulti2 , was chosen for submission to the test leaderboard, achieving an SST accuracy of
0.487, a QQP accuracy of 0.867, and a STS correlation of 0.848, for an overall test score of 0.759.
Due to factors discussed in the following section, these results are better than expected. Initially, we
were convinced that implementing SMART regularized optimization would be the most beneficial
use of our time and resources, however due to issues during the implementation portion of that phase,
and the routing phase, of the experiments, we ended up utilizing just a more complex model for our
testing, which performed better than expected.

6 Analysis

We will use this section to discuss the decision to submit a simple, but more complex, version of the
multi-headed BERT model over the versions with additions. First and foremost, this was a results-
oriented project, tasked with achieving the highest-possible score on the dev and test leaderboards.
To that effect, from very early on in the project it was our goal to identify methods that achieved
state-of-the-art results on the three benchmark datasets, and replicate those results. In doing so, we
hoped to achieve amongst the highest performance on the project’s leaderboards. As such, recognizing
that SMART regularized optimization was the state-of-the-art or part of the state-of-the-art models
for the QQP and STS benchmarks meant that it was meant to be a key part of our implementation.
Heinsen Routing was also idenfied in a similar manner, due to our general poor performance on the
SST dataset (though we also recognize that state-of-the-art standard on this is much lower than the
other two). However, breakdowns in implementation and constraints on compute power meant that
decisions had to be made with regards to chasing higher performance.

Jiang et al. (2020)’s reference implementation for their SMART algorithm is quite easily adaptable
to single-embedding heads. As a result, it is quite likely that during our attempts to retrofit their
implementation to fit our needs for the QQP and STS data, which were pairwise evaluations, we

6



introduced errors into the process that tanked the performance on the dev set. And, as such, due
to issues with the extended runtime brought about by the added complexity during finetuning, we
decided to pursue alternative routes, after realizing that our attempt had failed. A similar occurrence
likely caused the issues with the Routing + SMART model, however it is unclear to us why the STS
correlation suddenly became so low. Regardless, had the Routing model achieved higher performance
on the SST dataset, we would have been likely to attempt some sort of ensembe model. However, as
you can see, there was a decrease in SST accuracy. In fact, we might have been better suited with a
random initialization and random classification from the start, judging by our scores on that specific
task.

There are some comments we would like to make about our successful models, and some topics
that would have required further investigation had we had the time. Firstly, the order in which we
trained the model remained the same throught all of our experiments. We wonder if we would see
performance spikes or dips depending on the order of the three tasks during training. Secondly, we
saw a significant overall performance bump moving from one intermediate layer to two, however
this was not true while moving from 2 to 3 or from 3 to 4. We are curious if this pattern continues,
or what influence proper regularization would have had. Finally, we utilized cosine similarity and
regression loss throughout the whole project, which was indeed a recommended addition, however
we wonder what other experiments might have been run on that part of the project.

7 Conclusion

In conclusion, while we did not achieve the peak performance that we were aiming for, we are satisfied
with the efforts of our final model with respect to attempting to rank higher on the leaderboards.
While failures and time and resource constraints made it difficult to achieve the results we would
have wanted, with the methods we would have wanted, we feel as if this project was still successful.
In the end, it was our pursuit of higher scores which led us to implement the BERTMulti2 version as
our final model, in order to achieve the highest possible ranking that we could, because in the end,
performance is all that matters.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Samuel Fernando and Mark Stevenson. 2009. A semantic similarity approach to paraphrase detection.
Proceedings of the 11th Annual Research Colloquium of the UK Special Interest Group for
Computational Linguistics.

Franz A. Heinsen. 2022. An algorithm for routing vectors in sequences.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A method for stochastic optimization.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

7

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2211.11754
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

	Key Information to include
	Introduction
	Related Work
	Cosine Similarity Finetuning
	Smoothness-Inducing Regularized Optimization
	Heinsen Routing

	Approach
	Initial Model
	BERTMulti Model
	Finetuning

	Experiments
	Data
	Evaluation method
	Experimental details
	BERTBASE
	BERTMulti
	BERTMulti Parts 2, 3, and 4
	BERTMulti + SMART
	BERTMulti + Routing + SMART

	Results

	Analysis
	Conclusion

