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Abstract

This paper has two primary research goals, which are 1) to determine the baseline
performance of BERT with pre-trained weights on sentiment analysis using the
SST and CFIMDB datasets and 2) to investigate the effects of a learning rate
schedule, contrastive learning, and CosineEmbeddingLoss on the performance of
BERT on sentiment analysis, paraphrase detection, and semantic textual similarity
(STS). Examining methods to improve the performance of BERT will continue the
research conversation on how to develop sentence embeddings that are robust and
generalizable.

The approach utilized was to implement a baseline model of BERT called minBERT
using multi-headed attention and the Adam Optimizer and then train this model
for sentiment analysis. BEAKER is an extension to BERT that is trained on the
sentiment analysis, paraphrase detection, and STS tasks using the SST, Quora and
SemEval STS Benchmark datasets, respectively. From the experiments performed
in this project, we discover that in particular, of the three methods explored, learning
rate schedules with a warmup period have the potential to significantly improve the
performance of BERT on these three salient NLP tasks.

1 Introduction

One of the core research goals in the field of Natural Language Processing (NLP) is to develop
computational models that can accurately represent human language. This is a challenging topic for
researchers as human language is complex and contains intricacies that can begin to be understood
by models after a significant amount of training on text corpora. A language model that has gained
significant attention from researchers in recent years is the BERT model, or Bidirectional Encoder
Representations from Transformers model, proposed by Devlin et al. (2019) in 2019. The state-of-
the-art performance of the BERT model demonstrates the potential of pre-training language models
on unsupervised data to improve the quality of the sentence embeddings that are generated. In
addition, a major contribution of Devlin et al.’s research is the discovery that extensive pre-training
in combination with bidirectional model architectures leads to robust embeddings that can be used
for a variety of downstream NLP applications. This project aims to study how BERT’s performance
can be enhanced for three salient NLP tasks: sentiment analysis, paraphrase detection, and semantic
textual similarity (STS). Although the BERT model itself achieves high performance on various tasks,
there is a great opportunity to research how to achieve better results on classification tasks by using
techniques such as learning rate schedules, cosine similarity fine-tuning, and contrastive learning
during training. The contributions of this paper are as follows:
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Figure 1: Architecture of SBERT using cosine-similarity (Reimers and Gurevych, 2019)

• The project proposes an enhanced BERT model which we name BEAKER that uses a
linear learning rate schedule with a linear warmup to improve the performance of BERT on
sentiment analysis, paraphrase detection, and STS.

• The project researches the effect of different temperatures for contrastive learning on the
performance of the BERT multitask classifier.

• The BEAKER model with a linear learning rate schedule achieves greater performance on
sentiment analysis, paraphrase detection, and STS tasks than the baseline multitask BERT
model.

2 Related Work

2.1 Learning Rate Schedules

The paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Rothe et al. (2019)
exemplifies the use of a learning rate schedule with warmup in a transformer language model. Rothe
et al. developed a sequence-to-sequence model that achieves state-of-the-art results in sequence
generation tasks such as machine translation (MT), text summarization, sentence splitting, and
sentence fusion. Their model uses a linear warmup to the initial learning rate of 0.05 for the Adam
Optimizer. This warmup schedule utilizes 40 thousands steps and has a square root decay down to a
learning rate of 0. The success of using such a learning rate schedule for developing a language model
for downstream tasks demonstrates the potential of learning rate schedules for other models like
BERT. Rothe et al.’s publication was an inspiration for this project’s extension to use a linear warmup
and linear decay learning rate schedule to improve the performance of BERT on the classification
tasks of sentiment analysis, paraphrase detection, and semantic textual similarity (STS).

2.2 Cosine Similarity Fine-Tuning

Another extension to the multitask BERT classifier was inspired by the paper Sentence-BERT:
Sentence Embeddings using Siamese BERT-Networks by Reimers and Gurevych (2019). In their
publication, Reimers et al. proposes the model SBERT, which is a modification of BERT that
uses cosine-similarity to compare the semantic meaning of two sentence embeddings using cosine-
similarity. The architecture of SBERT is shown in Figure 1. SBERT applies BERT to two sentences
and obtains the pooled output from each sentence to obtain u and v. Then, these pooled outputs u and
v are compared using the cosine-similarity function, which returns a value from -1 to 1 representing
the similarity score of the two sentences. The high performance of SBERT on STS tasks by using
a cosine-similarity measure to predict the similarity of two sentence embeddings demonstrates the
promise of using cosine similarity to fine-tune the multitask BERT model for STS.
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Figure 2: Transformer Encoder Layer of BERT model (Vaswani et al., 2017)

2.3 Contrastive Learning

As another extension, I drew inspiration from SimCSE: Simple Contrastive Learning of Sentence
Embeddings by Gao et al. (2021). The authors had success on the semantic textual similarity (STS)
task using a supervised approach with “entailment” pairs as positives and “contradiction” pairs as
hard negatives. In contrastive learning, the intuition is to bring together semantically close neighbors
and push apart non-neighbors.

3 Approach

3.1 Architecture of Baseline BERT model

The baseline BERT model follows the approach detailed in the original BERT paper and consists of
embedding layers with a dimensionality of 768 (Devlin et al., 2019). The hidden state of the first
token, or the [CLS] token, will represent the embedding of the whole sentence.

The BERT baseline model used in this project is implemented using 12 Transformer layers. Each
Transformer layer applies multi-head attention followed by an additive and normalization layer with
a residual connection. The transformer layer then applies a feed-forward layer and another additive
and normalization layer with a residual connection. This can be visualized in Figure 2, which is taken
from the paper Attention is All You Need (Vaswani et al., 2017).

For this project, I implemented the multi-head self-attention and Transformer layer according to the
implementation details in Attention is All You Need (Vaswani et al., 2017). The equation for the
scaled dot-product attention is Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V . These attentions are

concatenated along the heads to obtain the multi-head attention. We define the feed-forward network
as FFN(x) = max(0, xW1 + b1)W2 + b2. This applies a ReLU activation function followed by a
linear layer. An important implementation detail is that a dropout layer with a value of pdrop = 0.1 is
applied to each sub-layer’s output before being added to the sub-layer input and before normalization.
Dropout is also used on the sum of the embeddings with the positional encodings. Another part of
the project that I implemented was the BERT classifier class, which uses the BERT model to encode
sentences and then applies dropout on the pooled output of each sentence and projects it through a
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linear layer in order to classify each sentence. Finally, I implemented the step() function of the Adam
Optimizer from scratch using the efficient method of bias correction, which is performed through the
following two lines of pseudocode:

αt ← α ·
√
1− βt

2/1− βt
1

θt ← θt−1 − αt ·mt/(
√
vt + ϵ)

3.2 Architecture of the Enhanced BERT model, BEAKER

BEAKER uses exactly the same model architecture as BERT, including 12 Transformer layers, a
hidden size of 768, multi-headed self-attention, and the Adam Optimizer with efficient bias correction.

All of the changes to BEAKER are in the training methods for the sentiment analysis, paraphrase
detection, and semantic textual similarity (STS) tasks including adaptive learning rates, the use of
CosineEmbeddingLoss for finetuning of BERT for the STS task, and contrastive learning with varied
temperature parameters.

3.2.1 Learning Rate Schedule Implementation

In order to incorporate adaptive learning rates, this experiment uses the
get_linear_schedule_with_warmup method from HuggingFace’s transformers library.
This establishes a learning rate schedule that has a linear decay from the initial learning rate that is
passed in as an argument to the optimizer to a final value of 0. Before this learning rate decay, there
is a warmup period where the learning rate increases in a linear fashion from a starting point of 0 to
the learning rate that is passed in to the optimizer. Thus, an important part of this approach was to
experiment with various initial values of the learning rate hyperparameter for the optimizer.

3.2.2 Cosine Similarity Fine-tuning for STS

This research also experimented with cosine similarity fine-tuning for the STS task. To implement
this, the experiment uses PyTorch’s CosineEmbeddingLoss when fine-tuning and cross-entropy loss
for pretraining as is used for the pretraining and finetuning of the other two tasks. In order to use
CosineEmbeddingLoss, the labels of the data must be normalized to a value between 0 to 1, with 0
signifying no similarity between the sentences and 1 signifying an equivalent meaning.

3.2.3 Contrastive Learning Implementation

This project’s implementation of contrastive learning leverages the NT-Xent loss function proposed
by Chen et al. (2020) in A Simple Framework for Contrastive Learning of Visual Representations:

Figure 3: NT-Xent loss function (Chen et al., 2020)

where i corresponds to the i-th batch, N is the minibatch size, hi and h+
i are the embeddings of the

training examples, τ denotes a temperature parameter, and sim(h1, h2) is the cosine similarity.

In my project’s implementation, we obtain the pooler output from BERT. We pass the pooled output
through a Linear layer with ReLU activation and a dropout layer with dropout probability pdrop = 0.3.
The cross entropy loss between the cosine similarity of the two embeddings is computed.

3.3 Baselines

The scores of the baseline BERT model on the task of sentiment analysis are compared to the accuracy
benchmark listed on page 14 of the CS 224N Default Final Project handout. The performance of the
enhanced BERT multitask classifier with the extensions of learning rate schedules, cosine similarity
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fine-tuning, and contrastive learning will be compared to the performance of the BERT multitask
classifier I implement without any extensions.

4 Experiments

4.1 Data

The study both pretrains and finetunes the baseline Bert implementation on the Stanford Sentiment
Treebank (SST) dataset, composed of 11,855 sentences from movie reviews (Socher et al., 2013).
Additionally, it pretrains and finetunes on the CFIMDB dataset, consisting of 2,434 highly polarized
film reviews (Choi et al., 2022). These datasets will be used for the NLP task of sentiment analysis,
which classifies text into categories according to its polarity.

The experiment uses the Quora dataset for the paraphrase detection NLP task, which is the task of
determining whether two pieces of text are paraphrases of each other. The Quora dataset contains
400,000 question pairs that are labeled according to whether one question is a paraphrase of the other
(Sharma et al., 2019).

The SemEval STS Benchmark dataset is utilized for the NLP task of semantic textual similarity,
or STS (Agirre et al., 2013). STS ranks the degree of similarity between two texts from a scale of
0, meaning no similarity, to 5, representing the same meaning. The SemEval dataset used for STS
contains 8,628 sentence pairs.

4.2 Evaluation method

The study utilizes accuracy as the evaluation metric for the sentiment analysis task using the SST and
CFIMDB datasets.

Accuracy is also the evaluation metric that will be used for the paraphrase detection task using the
Quora dataset. Accuracy is chosen as a metric due to the binary labels of the task.

The study will use Pearson correlation as the evaluation metric for the STS task using the SemEval
STS Benchmark dataset.

4.3 Experimental details

4.3.1 BERT Baseline Experiment

The baseline BERT model was trained on a NVIDIA T4 GPU using a learning rate of 1e−3 for
pretraining and 1e−5 for finetuning. Training time takes approximately 15 minutes each for the SST
and CFIMDB datasets. The baseline BERT model was pretrained and finetuned for 10 epochs each.
These same learning rates were initially used for the initial BERT multitask classifier in order to
maintain the learning rate hyperparameter as a controlled variables.

4.3.2 Multitask BERT Experiment

Later, further experiments were conducted to decrease the learning rate for both pretraining and fine-
tuning to determine if the performance of multitask BERT is improved. Specifically, the experiment
I conducted decreased the learning rate of pretraining to 1e−5 and the learning rate of finetuning
to 1e−7. This experiment also decreased the number of epochs of pretraining to 2 epochs and of
finetuning to 2 epochs. This helped to decrease the training time as the Quora dataset for paraphrase
detection takes significantly longer to run as it is much larger than the SST and SemEval STS datasets.

4.3.3 BERT Extension Experiments

The experiment for cosine similarity fine-tuning utilized the same hyperparameters for the learning
rate and epochs in order to study the effect of using CosineEmbeddingLoss for finetuning STS in
a controlled setting. My project also experimented with different initial learning rates and number
of epochs for the learning rate schedule extension. The initial experiment for using a learning rate
schedule only for sentiment analysis involved pretraining for 1 epoch at a learning rate of 1e−3 and
finetuning for 2 epochs at a learning rate of 3e−5. I chose to try a learning rate of 3e−5 as that was
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one of the learning rates recommended by the BERT paper by Devlin et al. (2019). When applying
learning rate schedules to all three downstream tasks, my project used the same initial learning rates
as the initial experiment of using a learning rate schedule for sentiment analysis. However, the
number of epochs for fine-tuning was decreased from 2 epochs to only 1 epoch. The project involved
experiments with contrastive learning using various temperature parameters. A batch size was 8 used,
the learning rate was 1e−5, and 3 training epochs were used.

4.4 Results

Table 1: Test Set Results Summary

Model SST Acc STS Acc Pearson Corr Overall
BEAKER: Learning Schedule SST 53.5% 36.9% 0.102 0.485

Table 2: Dev Set Results Summary

Model SST Acc STS Acc Pearson Corr Overall
Multitask BERT 18.6% 37.5% 0.185 0.385
CosineEmbeddingLoss 27.5% 37.5% 0.088 0.398
Learning Schedule for SST 52.9% 37.5% 0.095 0.484
Learning Schedule 3 Tasks 28.6% 43.3% 0.383 0.470

Table 3: Baseline for BERT on Sentiment Analysis

Model Dev Acc
Pretraining for SST 39.0%
Pretraining for CFIMDB: 78.0%
Finetuning for SST: 51.5%
Finetuning for CFIMDB: 96.6%

The results from this project’s experiments demonstrate that using a linear learning rate schedule
with linear warmup was quite effective at increasing the performance of BERT from the initial
baseline listed as Multitask BERT in Table 2. For instance, accuracy increased from 18.6% to
28.6% for sentiment analysis on SST and from 37.5% to 43.3% on STS. Pearson correlation also
increased from 0.185 to 0.383 when using a learning schedule for all three tasks. This increase in
performance is likely due to the learning schedule leading the optimizer to gradually move towards
the optimum, slowing down as it reaches closer to the minimum. The learning schedule prevents the
optimizer from jumping over the optimum due to using too large of a learning rate. Surprisingly,
CosineEmbeddingLoss led to a decrease in Pearson correlation for the STS task from 0.185 to 0.088.
This was a surprise as I had expected cosine similarity fine-tuning to improve the performance of
BERT. However, it is possible that too much fine-tuning could have led to over-fitting of the data,
leading to worse performance. For contrastive learning, we find the temperature parameter of 1 to be
most effective for the SST task with a dev accuracy of 47.3

5 Analysis

In this analysis, we will examine the prediction outputs for contrastive learning to see how the
model made decisions based on certain input sentence pairs. The contrastive learning BERT model
returned a predicted similarity score of -0.238 for the two sentences “118 people killed in twin
blasts in Nigeria.” and “Ten killed in new blast in Russia.” Thus, the model was able to recognize
the difference in number and location (118 vs Ten and Nigeria vs Russia). Another example of a
sentence pair analyzed by the contrastive learning model was the two questions “@Lustig Andrei, So
Lyndon Johnson and John Kennedy were compatible?” and “@edgarblythe, So Lyndon Johnson and
John Kennedy were compatible?” The predicted similarity score was -0.223 using the contrastive
learning model developed in this project. We see from these results that the model heavily weighed
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Table 4: Summary of Results for Contrastive Learning with Varied Temperatures

Temperature (T) .1 0.5 1 1.25
Dev SST Accuracy .314 .390 .473 0.431
Dev Paraphrase Accuracy .375 .375 .375 .375
Dev STS Accuracy .041 .010 -0.058 -.006

the difference in name (@Lustig Andrei vs @edgarblythe). Thus, the contrastive learning model is
quite successful in differentiating between people, names, places, and numbers when determining the
semantic similarity of two sentences. This is probably due to the use of the cosine similarity measure
when calculating the cross entropy loss in contrastive learning.

6 Conclusion

This project examined the baseline performance of BERT with pre-trained weights on sentiment
analysis using the SST and CFIMDB datasets and investigated the effects of learning rate schedules,
contrastive learning, and CosineEmbeddingLoss on three NLP classification tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity (STS). We can learn from the findings of
this project that a linear learning rate schedule with a linear warmup is effective in improving the
performance of BERT on classification tasks. It especially improves the performance on sentiment
analysis when the learning rate is only scheduled based on that task’s dataset. CosineEmbeddingLoss
was found to actually decrease the performance of this version of BERT’s performance on STS
when used during finetuning, which was a surprising discovery. Finally, contrastive learning was
moderately effective in improving BERT’s performance on multiple downstream tasks. This project
has several limitations, including the fact that the effects of these extensions depends on my initial
implementation of the BERT multitask classifier and the architecture I chose to use for making
predictions. Thus, this project’s results are not generalizable to all BERT classifiers. Additionally,
the training dataset for Quora was much larger than the SST and SemEval datasets, and thus it is
challenging to understand the effect of having much more data for paraphrase detection than the other
tasks. Future research that could be inspired by this project includes experimenting with different
learning rate schedules such as square root decay and other non-linear models as well as various
different initial learning rates for the optimizer.
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