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Abstract

Model merging, a method which combines the weights of multiple finetuned
models, has emerged as a new technique to build and update foundation models
to harbor multi-task capabilities. However, current research in the field focuses
primarily on applying model merging to vision models and encoder-decoder models.
Our paper explores and evaluates multiple model merging techniques for decoder-
only language models. Specifically, we finetune GPT-2 models on three datasets
from the GLUE Benchmark: SST-2, COLA, and MRPC, then merge them using
linear interpolation and more advanced merging techniques such as TIES-Merging.
We find that model merging generally works well for decoder-only language models,
but merging performance is affected by dataset characteristics. Specifically, we
finetune on specific model layers, finding that finetuning the last layer results in
less merging conflict. Finally, we study the effects of scaling up language models
on model merging, discovering that larger models improve merging performance.

[Mentor: Yuhui Zhang]

1 Introduction

The standard approach to training a Large Language Model (LLM) to achieve multi-task performance
involves curating a vast dataset and requires intensive computational resources to train. As a result,
model merging (Li et al., 2023) has emerged as a technique to combine the abilities of multiple models
at a low cost, enabling those without the necessary compute resources to harness the capabilities of
multi-task models while enabling LLMs to be conveniently updated with new task capabilities.

Model merging refers to the process of merging different models by finding optimal ways of com-
bining their parameters. In our paper, we select the decoder-only DistilGPT-2 model as our baseline
pretrained model. After finetuning this baseline model on three GLUE benchmark tasks: SST2
(sentiment classification), COLA (linguistic acceptability), and MRPC (paraphase detection), we then
conducted model merging on each pairing of these models. We first linearly interpolate the weights
of each pair of finetuned models (Choshen et al., 2022; Ilharco et al., 2022). In doing so, we observe
that selecting the optimal α during linear interpolation allows the merged model to achieve a merging
accuracy of up to 97% when merging models finetuned on similarly structured tasks (SST2 & COLA).
In contrast, we observed much higher merging conflicts on pairings with the MRPC dataset, a dataset
structured differently than SST2 and COLA as it compares two sentences rather than evaluating one.

We then implement TIES-Merging, an existing and recently proposed merging technique that claims
to address parameter interference (Yadav et al., 2023). In a similar fashion, we use DistilGPT-2 as
our base pretrained model and merge pairs of models finetuned on different sub-tasks in the GLUE
benchmark. However, we discover that TIES-Merging does not perform as well as linear interpolation,
perhaps due to the fact that TIES-Merging is specific to encoder-decoder models in addition to our
base pretrained model having far fewer parameters than the model TIES-Merging evaluated on.
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In addition, we explore whether different pre-merging conditions of the pretrained and finetuned
models have an effect on merging performance. We consider two conditions. First, we selectively
choose specific layers in the pretrained DistilGPT-2 model to finetune, evaluating each pair of
finetuned models on the GLUE benchmark after only finetuning their first, middle, or last layer and
freezing all other layers. Second, we evaluate whether the size of the pretrained model influences
merging performance by conducting linear interpolation experiments with larger models (GPT-2
small, GPT-2 medium) as our base pretrained model. We discover that finetuning on later layers leads
to less merging conflict than finetuning on earlier layers and significantly improves the maximum
merging accuracy for tasks which are structurally different in contrast to when all model layers were
finetuned. Finally, we find that models tend to merge better if they are both finetuned on a larger
pretrained model, with GPT-2 Medium outperforming DistilGPT-2 in average merging accuracy.

2 Related Work

Model merging is a new and emerging field in NLP. When the field first arrived, there was abundant
research on simple averaging techniques to merge model weights (Choshen et al., 2022). Since
then, there has been more research on developing more advanced and accurate merging techniques,
specifically the TIES-Merging and Fisher Merging techniques (Ilharco et al., 2023; Matena and
Raffel, 2022; Yadav et al., 2023). However, most research in model merging has focused on merging
vision or vision-language models (Ilharco et al., 2022) and exploring only encoder-decoder models.

We believe that our project makes two major contributions to this existing body of work:

1. We explore the effect of different model-merging techniques on decoder-only models (GPT-
2), which are the most state-of-the-art and prevalent language models as of now.

2. We tackle unexplored research questions on how pre-merging conditions such as finetuning
specific model layers and scaling the pretrained model influence merging performance. This
is an important contribution as current papers tend to focus solely on the merging technique,
yet determining the optimal conditions can exert an equal influence on merging performance.

3 Approach

Given our baseline model (DistilGPT-2), we first finetuned the pretrained model separately on three
downstream tasks (SST-2, COLA, and MRPC) from the GLUE dataset. We used instruction finetuning
(Chung et al., 2022) for our finetuning process, namely, we finetuned language models on tasks
phrased as instructions, which enables them to respond better to instructions. We use instruction
finetuning because it preserves the model structure and parameter size during model merging. In the
instruction finetuning process, we used the following three prompts for each downstream task:

1. SST-2 Prompt: "{s} This does suggest that this is" ("good"/"bad")

2. COLA Prompt: "This sentence {s} is linguistically" ("acceptable"/"nonacceptable")

3. MRPC Prompt: "The semantic meanings of ’{s1}’ and ’{s2}’ are" ("same"/"different")

Although we believe the above prompts could be refined (i.e. to be more specific / to flow more
naturally), we observed a minimal difference in performance when optimizing the prompt. However,
one possible future direction is to explicitly include the options available to the model for the next
word, preventing it from generating synonyms that are correct semantically but lower the accuracy.

We choose the above prompt for SST-2 because in evaluation, it achieved a slightly higher accu-
racy (around 1%) than the more intuitive prompt: "The sentiment of this sentence {s} is ("posi-
tive"/"negative")". Furthermore, we chose the above prompt for MRPC because the two words
"same" and "different" are directly antonyms but in order to place them in the same sentence, we
chose to sacrifice the grammatical correctness of their usage. However, we ensured that all our
finetuning accuracies were on par with research benchmarks before proceeding to the merging stage.

The first model merging approach we used is linear-interpolation (Choshen et al., 2022). We define
our linear-interpolation process as the following: Suppose we have two sets of parameter weights P
and Q from two downstream natural language tasks. We then calculate the final set of parameters R
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through the following equation:

Ri = αPi + (1− α)Qi (1)

For each pairing of the three tasks above, we plugged in 11 α values ranging from 0.0 to 1.0 with an
interval of 0.1. The above finetuning and linear-interpolation process is summarized in Figure 1.

Figure 1: Merging Finetuned Models with Linear Interpolation
Given a pretrained DistilGPT-2 model, we finetune it on two different datasets (A and B) respectively
and save their parameters. We then use Equation 1 to linearly interpolate the parameters to produce
merged parameters and load them into the pretrained model to obtain the final merged model.

Treating the linear interpolation results as a benchmark, we proceed to implement the TIES-Merging
approach (Yadav et al., 2023) for model-merging. This technique uses task vectors (Ilharco et al.,
2023), which are created by subtracting the weights of pretrained model from the weights of the
task-specific model, after being finetuned on a task. TIES-Merging seeks to address interference in
model-merging, namely the idea that parameter signs and magnitudes across models may interfere
with each other to the extent of harming model performance. TIES-Merging adopts the following
three-step pipeline on task vectors before merging them back with the original pretrained parameters:

1. Trim: For each task t, trim a certain percentage of parameters that are deemed to be
redundant and set them to 0.

2. Elect Sign: Then, create an elected sign vector to resolve disagreements in sign of each
vector by only keeping one direction for each parameter.

3. Disjoint Merge: Afterwards, compute a disjoint mean by only keeping parameter values
from models whose signs are aligned with the elected sign selected in the previous step and
calculate their mean.

Based on the idea that the performance of these models depends on a small fraction (k%) of
parameters, we experimented with different k values ranging from 0.0 to 1.0 with an interval of 0.1
for each pairing of the three downstream tasks mentioned above.

Then, we proceeded to adjust pre-merging conditions. Prior to merging, we first picked three specific
layers to finetune (the first layer, the middle layer, and the last layer) on each of the three datasets
above, while leaving the other layers untouched. We chose these specific layers with the understanding
that earlier model layers capture more general information about the task while later layers capture
more task-specific information.

Afterwards, we explored the effect of using a larger pretrained model (GPT-2 Small, GPT-2 Medium)
on merging performance, hoping to analyze whether scaling laws would still hold in model merging.

These experiments aim at understanding how setting certain optimal pre-merging conditions can
influence model merging results. After the finetuning process, we again used linear interpolation to
merge different combinations of finetuned, task-specific models and evaluate their performance.
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4 Experiments and Results

4.1 Data

All of our data comes from the GLUE dataset. Specifically, we chose three tasks from this dataset:
SST-2, COLA, and MRPC. We chose these three datasets considering our compute capacity, the
prevalence of the GLUE benchmark, and the widespread use of these tasks.

With these three datasets, we evaluated our finetuned models on the following three tasks:

1. Classifying the sentiment of a sentence. (SST-2)

2. Identifying linguistic acceptability of sentences. (COLA)

3. Categorizing whether two sentences are paraphrases. (MRPC)

4.2 Evaluation Metrics

We evaluate the performance of our models by testing how it performs on the validation dataset
specific to each task. Consistent with the instruction finetuning method we used in training, we
provided our models with the prompts we trained the models on, while omitting the last word for
the model to predict. The evaluation accuracy results we get from running these tests represent the
percentage of words correctly predicted by the trained model, out of the validation set.

We define the merging accuracy to be the relative performance of our merged model on the two
downstream tasks we evaluate it on (see below for a mathematical formalization). A high merging
accuracy indicates that our model is capable of performing well on both finetuned tasks, meaning the
model can be said to have true multi-task abilities. We calculate the merging accuracy in the following
way. Suppose the baseline accuracy from the finetuned models for the two tasks are respectively x
and y, and the new accuracy after merging are x′ and y′, the merging accuracy δ will be:

δ =
1

2
(
x′

x
+

y′

y
) (2)

Moreover, for each pair of finetuned models, we perform merging using a range of alpha values from
0.0 to 1.0 with an interval of 0.1. For each merge with a unique alpha value, we evaluate the accuracy
of the merged model on both tasks individually, and calculate the merging accuracy as defined above.
For each merged model emerging from a pair of task-specific models, we specifically consider two
important metrics: a) the maximum merging accuracy across all the alpha values and b) the average
merging accuracy across all the alpha values. For our purposes, the maximum merging accuracy is a
more important evaluation metric to optimize for as, in the real world, we are primarily interested in
the best merging results and notably, we are able to select the optimal alpha to produce those results.

4.3 Linear Interpolation

In these sets of experiments, we linearly interpolated all pairs of downstream tasks we selected (SST2
+ COLA, SST2 + MRPC, COLA + MRPC) using 11 different α values as mentioned above.

We observed that both maximum and average merging accuracies tend to be significantly higher
when merging models finetuned on SST2 + COLA in comparison to SST2 + MRPC and COLA +
MRPC. This shows that linear interpolation generally functions well as a model merging technique,
but task/dataset characteristics determine how high the merging accuracy between a given pair is.

4.4 TIES Merging

After the linear interpolation stage, we also did pairwise parameter merging on the same tasks
(SST2 + COLA, SST2 + MRPC, COLA + MRPC) using the TIES-Merging approach. We tuned
the hyperparameter named k in the paper, which determines the percentage of high-magnitude task
vectors we want to keep in the merging process. Because we neither wanted to discard all parameters
nor keep all parameters, we attempted k values between 0.1 and 0.9 with 0.1 as the increment.
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We found that TIES-Merging had far worse merging accuracy in comparison to linear interpolation.
This could be because we used a decoder-only, 80 million parameter pretrained model, which greatly
differs from the encoder-decoder, 220 million parameter model used in the TIES-Merging paper.

4.5 Finetuning Specific Layers

Contrary to our expectations, for finetuned models which failed to merge well through linear interpo-
lation (specifically, the pairs of SST2 + MRPC and COLA + MRPC), we achieved better results when
we merged models finetuned only on the last layer of the pretrained models rather than finetuned on
all layers. When we originally merged models that were finetuned on COLA and MRPC respectively
on all layers, the maximum merging accuracy we achieved was 52.93%, yet when finetuning these
models only on the last layer, the maximum merging accuracy was 66.51%. In addition, the average
merging accuracy was roughly 10% better when finetuning only the last layer. Merging models
finetuned solely on their first layer and their middle layer resulted in bad overall merging performance.

4.6 Scaling the Size of the Pretrained Model

When we scaled the size of the pretrained model we used to finetune on different tasks, namely from
DistilGPT-2 to larger models such as GPT-2 small or GPT-2 medium, we observed overall better
merging performance when using the larger models. Specifically, when substituting DistilGPT-2
with GPT-2 medium for our pretrained model, we not only get higher individual accuracies on both
datasets prior to merging but we also see a significant increase in both maximum and average merging
accuracy when merging tasks that are not structurally similar. Notably, models finetuned on COLA
and MRPC achieve a 20% increase in average model accuracy compared to using DistilGPT-2. It
is worth noting that GPT-2 small achieves comparable, albeit slightly worse, maximum merging
accuracies to DistilGPT-2 on SST2 + COLA and SST2 + MRPC, while significantly improving
the merging accuracy for COLA + MRPC. We hypothesize that since DistilGPT-2 is a comparable
lightweight version of GPT-2 small, the effects from scaling up our pretrained model are not as
noticeable as when we scaled up to GPT-2 medium, which has significantly more parameters.

4.7 Experiment Results Summary

We present the following two tables (Tables 1 & 2) to summarize our maximum merging accuracies
and average merging accuracies for all four sets of experiments we conducted.

We selected the maximum merging accuracy as a primary evaluation metric because we generally
care about choosing a single best merging α when we conduct model merging, to optimize for the
best result. However, we additionally evaluated on the average merging accuracy because the average
values reflect in general how effective a certain merging technique or pre-merging condition is.

Table 1: Max Merging Accuracy for each experiment

5 Analysis

Our main finding is that weight interpolation is an effective technique to merge decoder-only models.
A consistent throughline of our findings is that models finetuned on COLA and SST-2 respectively
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Table 2: Average Merging Accuracy for each experiment

merge much better than the other pairs (namely, COLA and MRPC and SST-2 and MRPC). We
hypothesize this is because COLA and SST-2 are tasks that have similarly structured datasets, as
both evaluate properties of a single sentence, meaning the models likely share more compatible
parameters. From this, we conclude that although model merging generally works well for combining
task-specific models, its performance depends heavily on dataset characteristics. As a work around,
we found that for tasks with different structural characteristics, finetuning the pretrained model on
specific layers and scaling up the pretrained model can improve their merging performance.

5.1 Comparing Merging Methods: Linear Interpolation vs. TIES-Merging

We expected the distribution of merging accuracy results among the range of alpha values we used
when conducting a linear interpolation of the model weights. Specifically, it makes sense that the
highest merging accuracy occurred with an alpha value of around 0.5 (falling within a range of alpha
values between 0.4 to 0.6) as that equally balances the capabilities of both finetuned models, not
overly sacrificing performance on one for another.

Moreover, the lower average merging accuracies when merging a model either finetuned on SST2
or COLA with one finetuned on MRPC can likely be attributed to structural differences in the task
described by the MRPC dataset as it involves comparing the semantic meaning of two sentences as
opposed to analyzing simply one sentence, as SST2 and COLA do. As a result, merging models
finetuned on SST2 and COLA results in better merging performance as the parameters of both
finetuned models are more likely to capture compatible features related to the meaning of a single
sentence, whereas merging either of these models with a model finetuned on the MRPC task is more
prone to parameter interference, preventing the merged model from performing well on both tasks.

Analyzing the two merging techniques we implemented, we did not expect linear interpolation to
perform much better than TIES-Merging since we assumed that the more advanced approach would
perform better. However, we offer two possible explanations for this, as follows.

One potential explanation for this is that TIES-Merging tailored their merging technique to T-5 base
and T-5 large, which are both encoder-decoder transformer models (Vaswani et al., 2023), whereas
distilgpt2 belongs to the family of decoder-only models (Radford and Narasimhan, 2018).

A second potential explanation for this may be that TIES-Merging is meant to address parameter
interference in merging larger models. T-5 base has 220 million parameters and T-5 large has 770
million parameters, whereas DistilGPT-2, the pretrained model we used, has a mere 82 million
parameters. Since we used a pretrained model with much fewer parameters, we hypothesize that our
merging process implicitly results in fewer instances of parameter interference, making TIES-Merging
not a suitable approach for our use case.

5.2 Effect of Finetuning Specific Layers on Merging Performance

We observed that finetuning only the last layer of the pretrained model on a specific task resulted in
improved merging performance in comparison to finetuning only the first or middle layer. In addition,
for the pairs of finetuned models which failed to merge well during linear interpolation, finetuning
them on solely the last layer resulted in better merging performance than when we finetuned them on
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all layers. Moreover, in addition to achieving comparable or better merging performance depending
on the dataset, finetuning on only the last layer is evidently more computationally efficient and
requires interpolating fewer weights, making it an appealing condition for merging dissimilar tasks.

We hypothesize that this is because in finetuning only the last layer of the pretrained model and
freezing the other layers, we maintain parameters in the earlier layers which encode the more general
capabilities of the model. In doing so, we minimize the risk of the model overfitting to any particular
finetuned task, thereby facilitating merging of its weights with another task-specific model. Preserving
general abilities is particularly important for merging models finetuned on MRPC with both SST2
and COLA since MRPC is a structurally different task from SST2 and COLA as we explained earlier,
meaning it benefits more from preserving parameters that capture general capabilities.

5.3 Effect of Scaling the Pretrained Model on Merging Performance

We observed that larger models such as GPT2-Medium result in better merging accuracies than
smaller models. We hypothesize this is because a model with a greater number of parameters better
generalizes to a variety of tasks, improving the ability for two task-specific models to merge well.

6 Conclusion

In this paper, we contribute to the emerging field of model merging by investigating various merging
techniques and specific pre-merging conditions that can improve merging performance. Our paper
offers an important contribution to the field of NLP as our paper offers guidance on a potentially
optimal set of merging techniques and model traits that can enable models to effectively acquire new
skills with no additional training, and achieve decent performance in two entirely different tasks.

Specifically, our paper demonstrates three primary findings: that linear interpolation is effective at
preserving the merged model’s performance on both datasets, finetuning on only the last layer of
the pretrained model results in better merging accuracy on pairs of models finetuned on structurally
dissimilar tasks, and using a larger pretrained model results in better merging performance.

A limitation of our work is that we were constrained to experimenting with relatively small pretrained
models due to computational constraints, meaning that we are unable to verify if these results are
consistent with larger models. In the future, we would like to experiment with merging three or more
finetuned models to achieve enhanced multi-task capabilities and further scaling the models at hand.
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A Appendix

Here, we share all of our merging results for every single experiment we ran.

Figure 2: Linear Interpolation: SST2 + COLA

Figure 3: Linear Interpolation: SST2 + MRPC
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Figure 4: Linear Interpolation: COLA + MRPC

Figure 5: TIES Merging: SST2 + COLA

Figure 6: TIES Merging: SST2 + MRPC
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Figure 7: TIES Merging: COLA + MRPC

Figure 8: GPT-2 Small: SST2 + COLA
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Figure 9: GPT-2 Small: SST2 + MRPC

Figure 10: GPT-2 Small: COLA + MRPC
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Figure 11: GPT-2 Medium: SST2 + COLA

Figure 12: GPT-2 Medium: SST2 + MRPC
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Figure 13: GPT-2 Medium: COLA + MRPC

Figure 14: Finetune First Layer: SST2 + COLA
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Figure 15: Finetune Middle Layer: SST2 + COLA

Figure 16: Finetune Last Layer: SST2 + COLA
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Figure 17: Finetune First Layer: SST2 + MRPC

Figure 18: Finetune Middle Layer: SST2 + MRPC
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Figure 19: Finetune Last Layer: SST2 + MRPC

Figure 20: Finetune First Layer: COLA + MRPC
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Figure 21: Finetune Middle Layer: COLA + MRPC

Figure 22: Finetune Last Layer: COLA + MRPC
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