
Multi-Tasking BERT: The Swiss Army Knife of NLP
Stanford CS224N Default Project

Nicole Garcia
Department of Computer Science

Stanford University
nicolejg@stanford.edu

Esteban Wu
Department of Computer Science

Stanford University
estewu@stanford.edu

Simba Xu
Department of Computer Science

Stanford University
simbaxu@stanford.edu

Abstract

This paper explores the performance improvement of the minBERT model through
applications of the Adam optimizer and multitask learning functionality to sup-
plement BERT’s ability to perform sentiment analysis, paraphrase detection, and
semantic textual similarity. Using an implementation of PALs, low-dimensional
multi-head attention layers added in parallel to the existing layers of BERT, this
added multitask learning functionality enables the BERT model to incorporate
task-specific information into a pre-trained general model that can share model
architecture across various tasks. Additionally, with the implementation of a single
linear layer classifier with dropout to evaluate the multitask learning performance,
tailored loss functions for each distinct task, and a gradient surgery approach
to update task gradients most appropriately for conflicting learning results, this
multi-pronged approach presents an overall improvement among the three given
tasks.

1 Key Information to include
• Mentor: Andrew Lee
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

The BERT model serves as both a breakthrough and benchmark for language model performance,
which we now want to expand upon to better perform across multiple tasks by sharing parameters
to expand its generalizability. As opposed to the traditional method of finetuning separate models
to cater to distinct tasks, we strive to accomplish this multitasking functionality through PALs,
projected attention layers that share most parameters across all tasks, but preserve a small number of
task-specific parameters which adapt the shared model.

To complement this PALs implementation, we also introduced the process of gradient surgery, an
approach in which "we modify the gradients for each task so as to minimize negative conflict with
other task gradients" (Yu et al., 2020). Through these two implementations, alongside the use of
a single linear layer with dropout for our multitask classifier, we apply the Adam optimization
algorithm on all tasks to develop our improved architecture. Additionally, we go on to use varying
loss functions to ensure accurate loss measurements among the distinct tasks, pairing the sentiment
classification task with cross entropy loss, the paraphrase detection task with binary cross entropy

Stanford CS224N Natural Language Processing with Deep Learning

loss with logits, and the semantic textual similarity task with mean squared error (MSE) loss.

In this paper, we discuss the implementation of the aforementioned concepts, the experiments
conducted and their results, and our interpretation of said results.

3 Related Work

Among the many related works in the field of BERT model improvements, two papers were at the
forefront of our chosen extensions to optimize the model’s performance. One such paper, "BERT
and PALs: Projected Attention Layers for Efficient Adaptation" (Stickland and Murray, 2019), goes
into detail of the creation of PALs as a new mechanism for incorporating task-specific information
into a pre-trained general model that can share model architecture across multiple tasks. By adding
task-specific function layers in parallel to the self-attention layers of the BERT model, PALs presents
an opportunity for multitasking functionality to be embedded into the BERT architecture, which can
be further improved through subsequent work.

Along similar lines, the "Gradient Surgery for Multi-Task Learning" paper (Yu et al.) dis-
cusses the challenge with combining gradients from distinct tasks, and proposes an approach to
remove the conflicting component between said gradients by projecting a task’s gradient onto
the normal plane of another task’s gradient to reduce interference between tasks. This extension
compliments the PALs implementation to ensure better gradient calculations can be shared among
the tasks.

3.1 Model Architecture and Multi-head Attention

BERT takes in a sequence (one or two English sentences in our case) and outputs a vector representa-
tion of that sequence. Each token in the sequence has its own hidden vector, and the first token of
every sequence is always a special classification embedding ([CLS]). At each layer of BERT the
hidden states of every sequence element are transformed, but only the final hidden state of [CLS]
is used for classification/regression tasks. We now describe how the vector for one element of the
sequence is transformed.

The multi-head attention layer (Devlin et al., 2019), is the core of the transformer architecture that
transforms hidden states for each element of a sequence based on the other elements (the fully-
connected layers act on each element separately). The multi-head layer, which we write as MH(·),
consists of n different dot-product attention mechanisms. At a high level, attention represents a
sequence element with a weighted sum of the hidden states of all the sequence elements. In multi-
head attention the weights in the sum use dot product similarity between transformed hidden states.
Concretely, the ith attention mechanism ‘head’ is:

Attentioni(h) =
∑
j

softmax

(
Wi

Qhi · (Wi
Khj)

T

√
dn

)
Wi

V hj (1)

where hj is a dimensioned hidden vector for a particular sequence element, and n rolls over every
sequence element. In BERT the Wi

Q, Wi
K , and Wi

V are matrices of size dn × d, and so each ‘head’
projects down to a different subspace indexed by i/n, attending to different information. Finally the
outputs of the n attention heads (each of size d/n) are concatenated together (which we show as [,]),
and linearly transformed:

MH(h) = WO[Attention1(h), ..., Attentionn(h)] (2)

with WO a d× d matrix2. Throughout this section, we ignore terms linear in d (like bias terms) to
avoid clutter, as they don’t add significantly to the parameter count. The matrices in a multi-head
layer have 3nd2/n+ d2 = 4d2 parameters.

We further define another component of a BERT layer, the self-attention layer, which we write as
SA(·):

2

SA(h) = FFN(LN(h+MH(h))) (3)

LN(·) is layer normalisation, requiring 2d parameters. FFN(·) is a standard feed-forward network:

FFN(h) = Wf (σ(W1h+ b1)) + b2 (4)

with σ(·) a non-linearity, GeLU, in BERT. W1 has size d× dff , and W2 has size d× dff , so overall
we require 2ddff parameters from the FFN component.

Putting this together, a BERT layer, which we write BL(·), is layer-norm applied to the output of a
self-attention layer, with a residual connection.

BL(h) = LN(h+ SA(h)) (5)

We have 4d2 + 2ddff total parameters from a BERT layer.

We write the dimensions of the hidden states in BERT-base as dm = 768. The final hidden state of
the first token of every sequence – the all is used for the transformation to the output.

The exact form of the transformation applied to the final hidden state of the [CLS] token is a simple
d× d linear transformation.

4 Approach

Using the self-implemented BERT model and Adam optimization algorithm, the chosen approach
builds on the pretrained BERT model ("bert-base-uncased"). On finetuning, the input training data is
fed into both the newly added PALs (the task-specific multi-head attention layers that are added
in parallel to the model’s self-attention layers), as well the existing BERT self-attention layers, as
seen below. Notably, a PALs class BertPalLayer was implemented and initialized such that its
task-specific functions of the form B_aug(h) = V Dg(V Eh) share encoder and decoder matrices
V E and V D across layers to transform the provided input, where V E is of dimensionality da × dh
and VD is of dimensionality dh × da and da < dh so that we can achieve multitask ability without
ever growing number of parameters. Using these parallel projected-attention layers, we are able
to add task-specific functions in conjunction with the existing BERT layers through the following
hidden layer relationship, where l is indicative of the layer:

hl+1 = LN(hl + SA(hl) + TS(hl))

SA refers to self attention introduced in the original bert model. TS refers to task specific attention
layers applied to l layer, used so that when finetuned on specific tasks, can allow the model to achieve
better accuracy with respect to the specific task while maintain a generalized model trained on all
tasks. Again, the structure of TS is as follows: TS(h) = V Dg(V Eh) share encoder and decoder
matrices V E and V D across layers to transform the provided input, where V E is of dimensionality
da × dh and VD is of dimensionality dh × da and da < dh. In turn, we are able to recover the
original BERT model if the task-specific transformation of a hidden state goes to 0 and also allow
for the hidden states to be transformed back to their original dimension based on an entire sequence.
As such, we are able to prioritize the "parameter budget on transformations with an inductive bias
useful for sequences" (Stickland and Murray, 2019) of multiple tasks, applying the layer structure
highlighted in the figure below. Appropriate adjustments were made to the configuration to account
for the additional heads needed for this implementation. We experimented with da = 132. With
multi-head attention architecture that shares V E and V D, we are looking to experiment with bigger
da dimension at da = 204.

3

In conjuction with PALs, gradient surgery is performed using the PCGrad library for PyTorch (Tseng,
2020) to combine the losses among all tasks to ensure no individual task’s learning gradient diminishes
another’s. Specifically, the chosen gradient surgery approach defines two gradients to be in conflict if
their cosine similarity is less than 0. When the aforementioned condition arises, the following update
is iteratively performed using the overall iteration gradient gi and each task-specific gradient gj :

gi = gi − gi·gj
||gj ||2 gj

By updating the overall gradient gi for a given iteration by repeatedly applying this projection formula
across all other tasks’ gradients in random order, it is ensured that "the gradients that are applied for
each task per batch interfere minimally with the other tasks in the batch" (cite gradient paper).
As mentioned previously, tailored loss functions was chosen to best represent the distinct loss for
each task. Using cross entropy loss for the sentiment analysis task, binary cross entropy loss with
logits for the paraphrase detection task, and MSE loss for the semantic textual similarity task, each
task’s loss was combined to find the net loss as follows:

LNetLoss = LSA + LPD + LSTS

We also extended the model by incorporating cosine similarity used for sts similarity task and cosine
similarity used in loss with MSE loss between the labels (range 0 to 5 label classes) and cosine
similarity between two embeddings of sentences scaled up to 0 to 5 labels scale. The loss is appended
to the composite loss in training process for fine-tuning. With this extension, the net loss becomes:

LNetLoss = LSA + LPD + LCOS

5 Experiments

We performed our experiments using the following data, procedures, and evaluation metrics.

5.1 Data

When conducting the following experiments, the provided SST, Quora, and STS datatsets were used
for the Sentiment Analysis, Paraphrase Detection, and Semantic Textual Similarity tasks respectively.
The following table presents the different example section sizes of each set:

Provided Dataset Sizes
Set Name Training

Examples
Dev Examples Test Examples

SST 8,544 1,101 2,210
Quora
(Paraphrase)

141,506 20,215 40,431

STS 6,041 864 1726

5.2 Evaluation method

To set baselines for comparison, the performances of the base BERT model with finetuning using
only the SST dataset and all three datasets were evaluated and compared to iterations of the improved

4

model. Specifically, we compare different iterations of our improved model’s scores on the three
tasks to the baseline scores provided below. Note that our different baselines only match or improve
upon the base BERT model through use of the provided datasets - this choice was made to better
assess the quality in performance boost of the chosen extensions for the improved model.

5.3 Experimental details

Our experiments were ran using the default model configurations for finetuning, although note that
for our PALs class, we adjusted its default configuration such that it specifically uses six heads
for calculating multi-head attention. Aside from this adjustment for our extension, we used the
default for our learning rate and our training time consistently took 3-5 hours for each experiment we
performed. These experiments were primarily performed on Nvidia T4 GPUs using virtual machines
hosted on the Google Cloud Platform.

Several important points of interest arose from trying to perform experiments with the cho-
sen extensions. One such finding was that to get our BERT model to run, we had to enable sending
tensors to CUDA in optimizer.py to ensure our code ran on a GPU as opposed to a CPU, which
was a necessary step not mentioned in the handout. Another point of interest was that, when
performing the experiment with the BERT PALs model with gradient surgery, the experiment proved
to be incredibly memory intensive to the point that using only one GPU was not practical for the
workload necessary. To lower the memory load on our single GPU, we needed to halve the batch size
from 8 to 4. Thus, this experiment shows that there is a considerable tradeoff between performance
and efficiency as we continue to add more extensions to our improved model.

5.4 Results

The quantitative results for the various baselines and model improvements are listed below.

Evaluation with Finetuning
Test Details (Results of Finetuning) Final Dev Performance
Base BERT (no extensions) - finetuned on only
SST dataset, used single linear layer classifiers
for all tasks

Dev Sentiment Analysis Accuracy: 0.520
Dev Paraphrase Detection Accuracy: 0.395
Dev Semantic Textual Similarity Correlation:
-0.019

Base BERT - finetuned on all 3 datasets, used
single linear layer classifiers for all tasks

Dev Sentiment Analysis Accuracy: 0.496
Dev Paraphrase Detection Accuracy: 0.699
Dev Semantic Textual Similarity Correlation:
0.333

BERT PALs model - finetuned on only the SST
dataset, used single linear layer classifiers for
all tasks

Dev Sentiment Analysis Accuracy: 0.515
Dev Paraphrase Detection Accuracy: 0.615
Dev Semantic Textual Similarity Correlation:
0.136

BERT PALs model - finetuned on all 3 datasets,
used single linear layer classifiers for all tasks

Dev Sentiment Analysis Accuracy: 0.508
Dev Paraphrase Detection Accuracy: 0.827
Dev Semantic Textual Similarity Correlation:
0.801

BERT PALs model with gradient surgery -
finetuned on all 3 datasets, used single linear
layer classifiers for all tasks

Dev Sentiment Analysis Accuracy: 0.509
Dev Paraphrase Detection Accuracy: 0.808
Dev Semantic Textual Similarity Correlation:
0.707

BERT PALs model with cosine similarity on
sts task - finetuned on all 3 datasets, used
single linear layer classifiers for all tasks

Dev Sentiment Analysis Accuracy: 0.501
Dev Paraphrase Detection Accuracy: 0.786
Dev Semantic Textual Similarity Correlation:
0.737

5

Test Leaderboard Results

6 Analysis

Upon analyzing the results of our various improved models in both the experiments and test
leaderboard results, it becomes clear that our BERT PALs Model with finetuning on all datasets
performs the best, ranking 42nd overall on the leaderboard and in the top 10 for the Sentiment
Analysis task. It was particularly interesting to see that the PALs model achieved a similar, yet
slightly poorer, performance even with additional features like gradient surgery, but this result may
be due in part to limited interference between tasks and task groupings by similarity. Nevertheless,
the successful results coming out of projected attention layers aiming to allow a generalized model to
be fine-tuned to achieve good or better than individually fine-tuned models to accommodate each task
showcases that the approach to find a generalized model that can be easily molded to solve specific
tasks is a viable direction.

To intuitively understand why the performance of the PALs implementation with finetuning on all
datasets supercedes the PALs implementation with the same finetuning and added gradient surgery
functionality, it is valuable to analyze their behavior on the Semantic Textual Similarity task. In this
task, where the two models share the most notable difference in performance, we can see that the
former model achieves a greater correlation by 0.1. This minor, yet notable, difference in performance
can be explained by the fact that gradient surgery eliminates conflicting gradient components among
all tasks, worsening the model’s performance on a task that is more distinct from the remaining
tasks. In our case, the liminited interference between Sentiment Analysis and the remaining two
tasks causes the gradient surgery to provide a minor enhancement in Sentiment Analysis and nearly
equal performance in Paraphrase Detection, but worsen the model’s performance in Semantic Textual
Similarity. Unlike the PALs model with gradient surgery, our original PALs model avoids making
these gradient changes and subsequently does not overly constrict the gradient of any particular task
due to task similarity.

7 Conclusion

In this work, we faced a number of challenges that arose when trying to expand the existing BERT
model’s architecture to achieve multitask functionality. By implementing the PALs model, in
which we used projected attention layers to share the model architecture among various tasks while
preserving some of each task’s unique parameters, and complementing this implementation with
finetuning on the provided datasets, we were able to both find a model with great performance as
well as narrow down the scope of what performance enhancements are feasible and worth exploring
within the bounds of the default project. In future work, we see ourselves exploring how the lower
rank size used in our model impact our final performance.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of

deep bidirectional transformers for language understanding.

Asa Cooper Stickland and Iain Murray. 2019. BERT and pals: Projected attention layers for efficient
adaptation in multi-task learning. CoRR, abs/1902.02671.

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning.

6

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
http://arxiv.org/abs/2001.06782

	Key Information to include
	Introduction
	Related Work
	Model Architecture and Multi-head Attention

	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

