
SMART Surgery: Combining Finetuning Methods for
Multitask BERT
Stanford CS224N Default Project

Ethan Foster
Department of Computer Science

Stanford University
epf@stanford.edu

• Mentor: Rohan Taori
• External Collaborators: None
• Sharing project: No

Abstract

We implement basic functionality for the minBERT model for multitask perfor-
mance on three downstream tasks: sentiment analysis on the Stanford Sentiment
Treebank 1 (Socher et al., 2013), paraphrase detection using the Quora dataset2, and
semantic textual similarity scoring on the STS SemEval Benchmark dataset (Agirre
et al., 2013). We then extend the minBERT model with several modifications,
focusing on different finetuning techniques including SMART loss as described in
Jiang et al. (2019) and gradient surgery as described in Yu et al. (2020). We also
augment the STS dataset to double our training data. We find that these finetuning
methods can effectively be combined to improve performance, with our models
that use SMART loss in combination with one or both of the other techniques
performing the best on our dev datasets.

1 Introduction

Training machine learning models to perform various tasks has been a widely adopted practice in
computer science research. Natural language provides us with a means to express a large variety
of different tasks. Thus, using the power of natural language processing, we are able to create and
train models that take in and output natural language in order to perform tasks. With the adoption
of multi-head attention, these models are also able to "focus" on several different parts of the input
sentences, making them a natural choice for a model that can perform multiple different tasks.

We use Bidirection Encoder Representations from Transformers ("BERT") model to produce a single
vector representation from an input sentence (Devlin et al., 2019). Our model uses multi-head
attention and feeds BERT’s outputted vector into separate output layers for each task (sentiment
analysis, paraphrase detection, and textual similarity scoring). We then train the model using our
datasets to maximize performance on all three tasks together. This work is an exploration in fine-
tuning specifically–adjusting the full breadth of the BERT model parameters and task output layers.
We focus on three main approaches in our fine-tuning attempts: SMART loss that introduces a strong
regularizer to prevent overfitting and aggressive updating proposed by Jiang et al. (2019), gradient
surgery to prevent conflicting gradients between different tasks proposed by Yu et al. (2020), and
augmenting the STS SemEval Benchmark dataset to double the training examples. These approaches
are used both individually, and in combination to determine their effects on the model and levels of
success.

1https://nlp.stanford.edu/sentiment/treebank.html
2https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

Stanford CS224N Natural Language Processing with Deep Learning



2 Related Work

There has been plenty of work in fine-tuning approaches to increase performance in different
downstream tasks. Our approach is inspired by the work of Jiang et al. (2019) and their proposed
SMART loss for fine-tuning pretrained large language models. To combat aggressive over-fitting, they
employ smoothness-inducing adversarial regularization and Bregman proximal point optimization. In
their work, Jiang et al. found that SMART loss improves performance in all five tested downstream
tasks when multitask training, and offered further increased benefits when combined with other
fine-tuning methods.

Gradient surgery proposed by Yu et al. (2020) offered another approach to fine-tuning. In their paper,
Yu et al. identified a source of conflict while fine-tuning for multitask learning. Named the "tragic
triad", the combination of conflicting gradients, dominating gradients (that occur when one gradient
has a much larger magnitude than the other), and high curvature can cause stalls in learning and
sub-optimal performance. Gradient surgery combats this by identifying cases of the "tragic triad" and
in those cases, projecting the gradient on one task onto the normal plane of the conflicting gradient.
Yu et al. also found that their proposed gradient surgery increased performance in several downstream
tasks and is able to be combined with other fine-tuning approaches for further gains.

Henderson et al. (2017) propose a different approach to fine-tuning: multiple negatives ranking loss
learning. This approach provides a feed-forward approach to score consistency between two terms.
It does this by taking a set of K pairs where each pair belong together, and terms from different
pairs do not. It then minimizes the distance between terms in each pair while maximizing distance
between terms in different pairs. This approach could be used where each pair consists of two similar
sentences. Fine-tuning would then minimize the distance between similar sentences and maximize
the distance between differing sentences, potentially improving the embeddings in our BERT model.

Based on these related works, our approach aims to combine the efforts of Jiang et al. (2019) and Yu
et al. (2020) since both works provide a fine-tuning approach that has shown results for multi-task
learning specifically, and are able to be combined. We include the multiple negatives ranking loss
method of Henderson et al. (2017) as an alternative or additional approach that could be taken, but
one that we will not utilize in our project due to time constraints.

3 Approach

3.1 Baseline minBERT

Using the provided scaffolding and default project handout, we first implement minBERT functionality
by implementing the multi-head attention layer of the transformer, the normalization and forward
functions of the BertLayer, and retrieval of the BERT embeddings. We then implement the sentiment
classifier to perform our first task, sentiment analysis. We encode our BERT encoded sentences and
after obtaining the pooled representation, we classify the sentence using dropout followed by a linear
layer. Then, we implement the step() funciton of the Adam optimizer using provided scaffolding
and based on the description in Loshchilov and Hutter (2017). Using our implemented minBERT
functionality and our Adam optimizer using a cross entropy loss function, we finetuned the model on
the sentiment analysis task to achieve a baseline performance of 0.515, recorded in our results table.

In order to complete the other two downstream tasks, we add two more dropout layers followed by
linear layers. These layers are designed for the paraphrase detection and semantic textual similarity
scoring tasks, so they must take in two sentences. Thus, we concatenate the embeddings from the two
sentences before feeding them into these layers, which output a single logit. Binary cross entropy
loss is used for the paraphrase detection task, and mean squared error is used for semantic textual
similarity scoring. To train the model on all three tasks at once, we batch sample from each dataset to
obtain a batch for each task, use our output layers to obtain our logits, calculate the loss for each task,
and sum them together before updating our model with our Adam optimizer. The performance of this
baseline finetuning model is recorded in the table under results.

3.2 SMART Loss

Given the complexity of our BERT model and the limited supply of our training examples, overfitting
to our training data will cause our model to generalize poorly to unseen examples, such as our testing

2



dataset. We implement SMART Loss as described in Jiang et al. (2019) to help prevent this aggressive
overfitting while finetuning. This method has two main parts. First, smoothness-inducing adversarial
regularization controls the high complexity of the model. The idea behind this step is to make the
model resistant to slight variations or perturbations in the embeddings. It does so by optimizing the
equation:

min
θ

F(θ) = L(θ) + λsRs(θ) (1)

where the loss function L(θ) is:

L(θ) = 1

n

n∑
i=1

ℓ(f(xi; θ), yi) (2)

and ℓ(·; ·) is our chosen task loss function, and λs is a tuning parameter. Rs(θ), our smoothness-
inducing adversarial regularizer is defined to be:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓs(f(x̃i; θ), f(xi; θ)), (3)

and ℓs(·; ·) is chosen to be symmetrized KL-divergence (ℓs(P,Q) = DKL(P∥Q)+DKL(P∥Q)) for
classification tasks, and squared error (ℓs(p, q) = (p− q)2) for regression tasks. Jiang et al. (2019)
also propose that this optimization function can efficiently be solved using gradient ascent, which we
implement.

Secondly, SMART loss involves Bregman proximal point optimization in order to penalize large
updates at each step. It does so using the equation:

θt+1 =θ F(θ) + µDBreg(θ, θt) (4)

where DBreg(·; ·), the Bregman divergence is defined to be:

DBreg(θ, θt) =
1

n

n∑
i=1

ℓs(f(xi; θ), f(xi; θt)) (5)

The second term in Equation 4 regularizes the updates to prevent them from being too large. We
implemented SMART loss on our own, following the algorithm described in Jiang et al. (2019). We
finetune the BERT model on all three downstream tasks together, summing the SMART loss from
each task before updating our model, similarly to our baseline model. We call this model SMART
BERT and record the performance of SMART BERT in the results table.

3.3 Gradient Surgery

Another consideration in finetuning our BERT model was that task gradients may conflict with
one another. Conflicting task gradients are not necessarily bad on their own, and summing task
gradients can lead to good performance under certain circumstances, as noted by Yu et al. (2020).
However, as Yu et al. also note, there are circumstances in which adding the gradients can lead to
significantly poorer performance as well, when compared to individual task finetuning. Yu et al.
name these specific circumstances the "tragic triad", and they are composed of three simultaneous
conditions: 1) Gradients from multiple tasks conflict with one another. They define conflicting
as when the cosine of the angle between the gradients is less than zero. 2) The difference in
magnitude of the conflicting gradients is large, causing one to dominate over the other. They define
the gradient magnitude similarity between gradients gi and gj to be Φ(gi,gj) =

2∥gi∥2∥gj∥2

∥gi∥2
2∥gj∥2

2
. This

value goes to zero as the difference in magnitude of conflicting gradients increases. 3) There is a
high curvature within the multitask optimization landscape. Yu et al. define the multitask curvature
to be H(L; θ, θ′) =

∫ 1

0
δL(θ)T δ2L(θ + a(θ′ − θ))δL(θ)da. When H(L; θ, θ′) is large for model

parameters θ and θ′ between the current and next iteration, then the optimization landscape is
characterized as having high curvature. Yu et al. show that the presence of these three conditions
leads to the Adam optimizer stalling at sub-optimal plateaus providing empirical evidence of the
tragic triad and its effects in multitask finetuning.

Yu et al. (2020) propose a method to avoid the tragic triad by altering the gradients to prevent conflict
between them. Their method looks at each pair of gradients, and if they conflict, they project the first
gradient onto the normal plane of the second gradient. This process is illustrated in Figure 1.

3



Figure 1: Conflicting gradients like the example above will have gradient surgery performed. The
gradients that conflict will each be projected onto the normal plane of the other.

Yu et al. check for conflicts by calculating cosine similarity and classify negative cosine similarities
as indicative of conflict. We implemented this finetuning method on our own, following the algorithm
provided by Yu et al. (2020) in their original paper. To finetune our BERT model using gradient
surgery, we sample from each of our three tasks. After calculating the loss for each task, we take each
task’s gradients, perform gradient surgery to resolve conflicts, and then sum our updated gradients to
update our model. We call this model PCGrad BERT, taking the naming convention from Yu et al.
(2020) where it stands for projecting conflicting gradients. We record the performance of PCGrad
BERT in the results table.

3.4 Augmented STS Data

In order to maximize the use of our limited dataset, especially our smallest dataset, the STS SemEval
Benchmark dataset, we looked for ways to augment the data and provide additional training examples.
Looking at the semantic textual similarity scoring task, we realized that it seemed symmetric in
nature. That is, if sentence A and sentence B have a similarity score of 3.6, then sentence B and
sentence A would also presumably have a similarity score of 3.6.

Building off this intuition, we believed that we could double our dataset if we were to re-use each
training example, providing the sentences in the reversed order. We implement this data augmentation
step on our own, modifying the provided code to handle the SemEval dataset. With our changes,
the training examples for the semantic textual similarity scoring task doubled, and we also hoped to
capture the symmetric quality of this task in our finetuned embeddings. We record the performance
of Augmented finetune in the results table. We finetune the model the same way as our baseline
minBERT, however we can increase the batch size for our semantic textual similarity scoring task.
We call this model stsAug BERT (short for semantic textual similarity augmented BERT), and record
its performance in the results table.

3.5 Combined Approaches

All of the above approaches were chosen in part because they are able to be combined with other
finetuning methods. As such, we were also able to combine each of them with one another to see
how that would improve or otherwise affect the performance on the three downstream tasks. We
combine them in every combination: SMART+PCGrad, SMART+stsAug, PCGrad+stsAug, and
SMART+PCGrad+stsAug and finetune the original BERT model using them. The same hyperpa-
rameters, which are described in our Experimental Details, are used for each approach, although the
batch size for the SemEval Benchmark dataset is doubled when stsAug is used. The performance
from each combination is recorded in the results table.

4 Experiments

4.1 Data

We use three main datasets for our three downstream tasks, and one additional dataset as a benchmark
during our implementation of minBERT. Our first task is sentiment analysis, and is trained and
evaluated on the Stanford Sentiment Treebank, provided by Socher et al. (2013). This dataset is
made up of 11,855 sentences taken from movie reviews and contains 215,154 unique phrases. Of
this dataset, 8,544 sentences are used in the training set, 1,101 are used in the dev set, and 2,210 are

4



used for testing. Each sentence is labeled negative, somewhat negative, neutral, somewhat positive,
or positive using an integer 0 to 4. For this first classification task, our model takes in the embeddings
of the single sentence and outputs the predicted probability distribution for the 5 categories. During
our implementation of minBERT, we also use the CFIMDB dataset for our benchmark tests. This
dataset consists of 2,434 movie reviews that are highly polar, and each has a binary label of negative
or positive. 1,701 of these reviews are used in the training set, 245 are used in our dev set, and 488 are
used in our test set. Our model similarly takes in the embeddings and outputs the predicted probability
distribution for the binary classification. The CFIMDB dataset is used during the implementation of
minBERT only, and is not used for the finetuning extensions.

Our second task is paraphrase detection and is trained and evaluated using the Quora dataset provided
to us in the starter code. We are provided 141,506 examples to train our model with, 20,215 examples
for our dev set, and then a testing set of 40,431 examples. Each example consists of a pair of questions
with a binary label to indicate if the questions are paraphrases of each other. For our paraphrase
detection class, our model takes in a concatenation of the two questions’ embeddings, and outputs a
single logit that is the predicted probability that the questions in the input pair are paraphrases of one
another.

Our last task is semantic textual similarity scoring, and we use the SemEval STS Benchmark dataset
to train and evaluate this task. This dataset contains 8,628 pairs of sentences with labels that indicate
how similar each pair of sentences is. The similarity is given as a continuous value on the scale of 0
(unrelated) to 5 (equivalent meaning). Of this dataset, 6,041 pairs are used for training, 864 are used
in the dev set, and 1,726 are used in testing. For this task, our model takes in a concatenation of the
two sentences’ embeddings, and it outputs a single continuous value between 0 and 5, indicated the
predicted similarity value between the sentences.

4.2 Evaluation method

To evaluate performance in downstream tasks for each model, we use percentage accuracy for
sentiment analysis and paraphrase detection, and we use Pearson correlation for semantic textual
similarity, following the evaluation method used by Agirre et al. (2013). The scores reported in the
results table are calculated using our dev sets for all models, with three models chosen to receive
scores calculated from our additional testing set. The datasets used for evaluation are labeled in the
table. The accuracy for sentiment analysis and paraphrase detection are calculated by simply dividing
the number of correct predictions outputted by the number of examples used in evaluation. For the
semantic textual similarity task, the Pearson correlation coefficient is calculated between the true
similarity values and the predicted similarity values for the evaluation data. These three evaluation
metrics are also combined into an overall score upon submitting to a class-wide dev leaderboard.
This is done by first converting the Pearson correlation from a [-1, 1] range to a [0, 1] range, and then
averaging the three scores of the tasks. For each model design, we keep the model with the highest
overall score.

4.3 Experimental details

We run all of our training with the same hyperparameters of learning rate, dropout rates, and epochs.
We use a learning rate of 1e-5, dropout rates of 10% in within the BERT layers and 30% in the
individual task heads, and 10 epochs. Our implemented ADAMW optimizer uses a learning rate of
1e-3, beta values of 0.9 and 0.999, and an epsilon of 1e-6.

For SMART loss, we set our hyperparameters to λ = 5, ϵ = 1e − 4, σ = 1e − 4, µ = 1, and
η = 1e− 2, following the range of appropriate hyperparameter values from Jiang et al. (2019), and
after experimenting with several values and selecting the combination with the highest performance.
These same hyperparameters are used for all models that use SMART loss.

Our batch sizes for the three downstream tasks are 2 for sentiment analysis, 20 for paraphrase
detection, and 2 for textual semantic similarity scoring. When training our models with stsAug, we
set our batch size to 4 for textual semantic similarity, since our training data has doubled.

5



4.4 Results

We submitted all our trained models to the dev leaderboard to determine our scores on the dev dataset.
Additionally, we submitted our three highest performing models from the dev dataset to a separate test
leaderboard to determine our scores on the test dataset. We record all of our models’ performances in
the table below. The highest performance in each task is bolded. There are separate columns for our
dev performance and test performance, labeled for clarity. All models are finetuned for multitask
performance except the first baseline model which is finetuned on only sentiment analysis.

Model sst dev para dev sts dev sst test para test sst test
Baseline finetuned single-task 0.515
Baseline pretrained 0.404 0.550 0.223
Baseline finetune 0.511 0.750 0.345
SMART finetune 0.502 0.759 0.371
PCGRAD finetune 0.500 0.760 0.352
stsAug finetune 0.489 0.768 0.352
SMART+PCGrad finetune 0.510 0.758 0.360 0.525 0.762 0.336
SMART+stsAug finetune 0.524 0.774 0.343 0.512 0.779 0.331
PCGrad+stsAug finetune 0.499 0.757 0.360
SMART+PCGrad+stsAug finetune 0.525 0.752 0.375 0.520 0.755 0.334

We found that the highest dev performances were from models that used SMART loss. The model
that combined all three approaches (SMART+PCGrad+stsAug finetune) had the highest scores
for sentiment analysis and semantic textual similarity scoring, while the model that combined
SMART loss with augmented sts data (SMART+stsAug finetune) had the highest score for paraphrase
detection.

The models that combined multiple finetuning approaches generally outperformed the baselines and
those that used only a single finetuning approach, which was unsurprising to us. One surprising finding
was that SMART finetune outperformed SMART+stsAug finetune despite the increased training data
in the latter model. Another surprising finding was that while the SMART+PCGrad+stsAug finetune
model achieved the best performance for sentiment analysis and semantic textual similarity in the dev
dataset, it did not perform the best in the test dataset, with SMART+PCGrad finetune outperforming
it in all three tasks.

5 Analysis

We look at the outputs of our models against the true values in the datasets to identify cases where
our model performs poorly and try to understand why this may be. Looking at the inaccuracies from
our sentiment analysis task in the dev dataset, we find that our model generally predicts the sentiment
within 1 level of the true sentiment. That is, most of the errors come from instances such as predicting
"positive" when the true category is "somewhat positive", or predicting "somewhat negative" when
the true category is "neutral". Many of these mistakes can be reasonably understood, especially when
taking into account the subjectivity of rating the sentiment of reviews. We find ourselves agreeing
with the "incorrect" predictions over the "true" labels in some cases, such as rating " It’s a lovely
film with lovely performances by Buy and Accorsi" as "positive" rather than "somewhat positive."
However, there are other cases where our model’s errors can not be explained by personal opinion and
the subjectivity of the task. One example is with the review: "It moves quickly, adroitly, and without
fuss; it doesn’t give you time to reflect on the inanity–and the Cold War datedness–of its premise"
which was predicted as "negative" but was labeled "neutral" as its true label. This review addresses
some potentially negative aspects of the film, such as its "inanity" and "Cold War datedness," but
ultimately partly disregards these negative aspects. Our models may have focuses too much on these
negative aspects, resulting in too negative of a prediction overall. The nuances of the review may
have been lost in the sentence embedding.

Looking at our failed predictions in the paraphrase detection task in the dev dataset, there are a few
patterns that we notice. One pattern is that our models consistently mislabel a paraphrased question
pair when one question includes a pronoun and the other does not. For example, "What makes
one angry?" and "What is the one thing that makes you most angry?" was mis-predicted as not a

6



paraphrase of one another. The latter sentence contains the pronoun "you", while the prior sentence
does not. There are several instances of mislabeling sentences such as these, and this could be due
to how the model has learned to treat pronouns. Perhaps the model has learned, from finetuning on
the semantic textual similarity task for instance, that the presence of pronouns, especially differing
pronouns, can change the similarity of a sentence. This could lead to the finetuned embeddings
reflecting very different values depending on the presence of pronouns, resulting in poor performance
for paraphrase detection in these instances.

We also look at the failed predictions in the semantic textual similarity scoring task in the dev dataset.
Here, our errors are a little harder to interpret as there seems to be pretty consistent over-scoring as
well as under-scoring in many cases. However, one case of over-scoring seems to occurs when there
are multiple words that overlap in the two sentences. For example, the sentences "UN chief welcomes
peaceful presidential elections in Guinea" and "UN chief condemns attack against peacekeepers in
Mali" consistently had a predicted similarity of 3 or higher, signifying a high level of similarity.
This may be due to the overlap of the words "UN" and "chief" as well as the potentially similar
embeddings for "peaceful" and "peacekeepers" as well as for "Guinea" and "Mali." Although in
reality these two sentences have very different meanings, the model may have focused too much on
the presence of these overlapping words, resulting in over-scoring the similarity.

One other pattern that we noticed, and were surprised by, was that the use of augmented SemEval
STS Benchmark data did not consistently improve performance on the semantic textual similarity
scoring task. Looking at our results table, we see that SMART finetune model scored a 0.371 for this
task. However, introducing this augmented data in the SMART+stsAug finetune model resulted in a
drop of score to 0.343, our lowest score in this task besides the Baseline pretrained. We believe that
the introduction of this augmented data may have caused the model to overfit to the limited data it
had. Simply swapping the order of the sentences may not have been enough to truly diversify the
data more, resulting in poorer performance in the dev and test datasets.

6 Conclusion

In our project, we show how SMART loss, gradient surgery, and augmented data, used individually or
in combination, can improve the performance of the multitask BERT model for the three downstream
tasks: sentiment analysis, paraphrase detection, and semantic textual similarity scoring. Our best
performing models all used SMART loss in combination with one or both of the other methods,
indicating that these finetuning methods can be effectively combined with one another for increased
performance. These finetuning methods aim to decrease the complexity of the model, reduce
aggressive overfitting, prevent conflicting gradients, and increase the size of datasets. However, these
approaches are not perfect, and while they do each increase overall performance, models trained
with these approaches still exhibit overfitting and in some cases, decreased performance in certain
individual tasks compared to the baseline finetuning without any extensions.

In the future, we could further explore adjusting hyperparameters for our current approaches to find
an optimal use of SMART loss and gradient surgery. Another future route would be to implement
the multiple negatives ranking loss learning proposed by Henderson et al. (2017) and mentioned
in our related work section. This is another approach to finetuning that differs from our currently
implemented methods and would further our exploration in finetuning the BERT model.

References

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *sem 2013
shared task: Semantic textual similarity. Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

7



Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,
Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. 2017. Efficient natural language response
suggestion for smart reply. arXiv.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. arXiv preprint.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. Proceedings of the 2013 conference on empirical methods in natural language processing.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. Conference on Neural Information Processing
Systems (NeurIPS).

8


	Introduction
	Related Work
	Approach
	Baseline minBERT
	SMART Loss
	Gradient Surgery
	Augmented STS Data
	Combined Approaches

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

