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Abstract

Brain-computer interfaces could enable people who have lost the ability to speak
to communicate efficiently by decoding intended speech from neural activity.
Current state-of-the-art models utilize recurrent neural networks to map neural
activity to sequences of phonemes and the viterbi algorithm to map sequences
of phonemes to text with prior probabilities given by a large language model. I
hypothesized that these systems could be improved by (a) identifying pretrained
language models that well-describe the distribution of text used in day-to-day
speech, (b) utilizing a transformer instead of an RNN for mapping neural activity
to phonemes. Surprisingly, I found that a simple trigram language model trained
on the switchboard corpus outperformed a pretrained large language model in
capturing the statistical properties of spoken language. Unfortunately, replacing the
RNN with a variety of transformer architectures did not improve the performance
of the neural activity to phoneme system. Taken together, these results suggest
that a principled selection of a language model prior has the potential to improve
communication neuroprostheses.
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2 Introduction

Brainstem stroke and ALS can cause people to lose the ability to control small face and mouth
muscles, rendering them unable to speak. Existing assistive technologies leverage preserved motor
functions to decode language from large hand movements and eye movements to enable individuals
to control a computer and generate speech. However, these technologies are limited to typing speeds
of less than 20 words per minute. Luckily, even when fine-grained facial motor function is lost, the
neural activity planning and supporting those motor functions in the brain may be maintained. Thus,
one way to enable more efficient communication could be to decode intended sentences from neural
activity recorded in speech-related areas in the brain.

3 Related Work

A wide range of approaches have recently been proposed for communication neuroprostheses, from
decoding imagined handwritten letters from motor cortical areas to decoding intended phonemes or
complete words from speech premotor areas.

In 2021, Moses and colleagues demonstrated a speech neuroprosthesis that involved training a word
classifier on neural activity in sensorimotor cortex (Moses et al., 2021). However word classification
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approaches are generally limited to relatively small vocabularies due to the constraints of collecting
training datasets with large vocabularies and limitations in the separability of neural activity sampled
at a limited number of sites in the brain.

More recently, a number of studies have proposed decoding individual characters or phonemes
from neural activity to enable flexible communication with large vocabularies. In 2021, Willet and
colleagues developed a brain-computer interface by decoding characters from neural activity in motor
cortex while participants imagined writing each character. An RNN was used to map neural activity
to character probabilities which were then combined to predict words and sentences using the viterbi
algorithm with a language model prior. The authors demonstrated typing speeds of 90 characters
per minute with greater than 90% accuracy with this system (Willett et al., 2021). In 2023, Willet
and colleagues developed a speech neuroprosthesis by decoding intended speech from neural activity
in a premotor area and Broca’s area. Using an RNN to decode phonemes in conjunction with a
language model, they demonstrated a 9 percent error rate on a 50 word vocabulary decoding task and
23 percent error rate on a 125,000 word vocabulary decoding task. Excitingly, they also released all
of the data they collected in this experiment which consisted of recordings of neural activity from
premotor and speech areas recorded while a participant attempted to speak 12,100 sentences. (Willett
et al., 2023)

4 Approach

Here, I have examined two potential strategies to improve communication neuroprostheses via
improving the language model prior and the neural activity to phoneme model. I have tested these
strategies using the aforementioned, publicly available dataset (Willett et al., 2023).

What pretrained language model should be used as the ’prior’ for mapping a sequence of
phonemes to a sequence of words for a communication neuroprostheses? I hypothesize that
language models that better represent the distribution of text used in day-to-day speech will outperform
those that represent the distribution of text in news articles or text on the internet. I will train simple
n-gram models on a variety of different text corpuses and compute their perplexity on sentences in the
brain-to-text validation set (see Table 1). These sentences are intended to represent things that a patient
may want to communicate and thus should capture the distribution of text used in day-to-day speech.
I will also compare a variety of pretrained LLMs using this approach. I predict that models trained
on a large speech specific corpus will outperform models trained on more general text databases or
a smaller speech corpus. The language model with lowest perplexity on communication-relevant
datasets should be the optimal model for the viterbi algorithm prior.

What sequence-to-sequence model should be used to map neural activity to phonemes? I
hypothesize that a transformer architecture will outperform RNN-based approaches for decoding
sequences of phonemes from neural activity. I will test this approach by replacing the state-of-the-art
GRU model presented in (Willett et al., 2023) with a variety of different transformer architectures.

5 Experiments

5.1 Data

The dataset consists of neural activity recorded while a participant intended to speak 12,000 sen-
tences (Willett et al., 2023). Neural activity was recorded with two electrode arrays, each with 128
extracellular electrodes, implanted in the brain of the participant. These extracellular electrodes
capture voltage fluctuations outside of neurons at 256 points in the brain. Large changes in measured
voltage typically correspond to a neuron firing an action potential nearby. However, interpreting the
recorded voltage signal directly is not straightforward (the "spike sorting" problem), and thus for
real-time applications such as brain-computer interfaces, simpler features are typically extracted from
the voltage trace. These features include counting the number of threshold crossing events (which
roughly corresponds to the number of spikes in nearby neurons) as well as the ’spike band power’.
Spike band power is used to capture spiking activity in cases where there is low signal-to-noise ratio
and threshold crossings perform poorly (Nason et al., 2020). Figure 1a shows spike-band power in a
subset of channels and time bins in a trial on the left and in all channels and time bins in a single
trial on the right. Spike-band power is very high in channel number 20 in the left plot, suggesting
there may be many neurons firing nearby. Figure 1b shows threshold crossing events in a subset of
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channels and time bins in a trial (top) and in channels and time bins in a single trial (bottom). A count
of four threshold crossing events roughly indicates that one or two nearby neurons fired a total of
four spikes in that time period, but exactly what threshold should be used is not clear and is likely
different for different electrode channels. As a result, the authors filter the data with four different
thresholds, all of which could be used simultaneously as features. Here, I use only spike band power
(128 features) and threshold 1 crossings (128 features) from one of the two electrode arrays (256
dimensional input total).

There are 8880 training trials and 880 validation trials in the dataset. Neural data on each trial is thus
a 256 x trial length array. The language data on each trial is a single sentence which is preprocessed
as a sequence of phonemes. Examples of sentences in the training dataset are shown in Table 1.

(a) Spike Band Power.

(b) Threshold crossing events (threshold 4 > 3 > 2 > 1)

Figure 1: Example neural data from one trial of train set.

Sentences
We got pretty lucky on that.
I guess that’s about all I have to say.
Live without dessert for the most part.
Don’t buy them that way.
I live in a farming community.

Table 1: Example sentences from five trials of train set.
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5.2 Evaluation method

Perplexity was used to evaluate how well language models captured the distribution of spoken text
in the Brain2Text dataset. The perplexity of a sentence of length t words x1, x2, ..., xt is defined as:
P (x1, x2, x3, ..., xt) = exp(−1/t

∑t
i logpθ(xi|x<i)).

I report median perplexity across all sentences in the validation dataset here which consists of 880
senetences similar to those in Table 1.

Connectionist temporal classification (CTC) loss was used to evaluate the neural activity to phoneme
models and was computed using PyTorch. CTC loss is ideal for this scenario because the output of the
model is a continuous, unsegmented time series and thus there may be many appropriate alignments
of the output phoneme predictions to the target sequence of phonemes.

I report the CTC loss averaged across each sentence (phoneme sequences) in the validation dataset
here.

5.3 Experimental details

For the experiments on the language model prior, n-gram models were implemented with custom
code, and pre-trained GPT-2 and OPT350M models were obtained from HuggingFace. Train and
validation sentences were preprocessed by removing punctuation.

The most important aspect of this experiment was ensuring a fair comparison between between
n-gram models and different LLMs, which is challenging given that they have different tokeniz-
ers/vocabularies. To address this, I enforced an identical vocabularly for all models. I defined the
vocabulary as the set of all words in the Brain-to-Text train and validation set that occur more than
once. For computing perplexity with pre-trained LLMs, I computed logprobabilities using softmax
over only the subset of words in the vocabularly.

My experiments on the neural activity to phoneme decoder were built off of code provided by Willett
et al. (2023). Thus, I used identical parameters to the paper for training the GRU-state-of-the art
model (additional details and implementation provided here).

I then replaced the GRU with my own version of a transformer model based on a combination of this
code and the code from assignment 4. All transformers had 8-heads and an embedding dimension of
512 (neural data from two adjacent time points concatenated together). All other parameters were
identical to those in assignment 4. I varied the number of blocks (2 or 3), type of attention (self-
attention vs causal self attention), and dropout probability (0.1 or 0.3) in three different experiments
as shown in the figure.

Batch size was 64 trials and training progressed until CTC loss on the test set plateaued.

5.4 Results

A trigram model trained on the switchboard corpus achieved the lowest perplexity on the brain-to-text
validation set, lower than both pretrained LLMs, such as GPT-2 and OPT350M, and other n-gram
models trained on a non-speech corpus (Reuters) or a small speech corpus (brain-to-text train set)
(Table 2). I was surprised by the performance of the trigram model trained on the switchboard corpus,
although this is consistent with my prediction that language models trained on a speech corpus will
better represent the distribution of language used in day-to-day communication.

The three transformer architectures I tested did not outperform the state-of-the art GRU model which
achieved a CTC loss of 0.82. The closest transformer model was the model with 3-layers, causal
attention, and a dropout probability of 0.1 which achieved a CTC loss of 1.26. I may have stopped this
experiment too prematurely though and this could potentially have further decreased with additional
training. This was somewhat surprising to me, although, I think theses results could be explained by
inadequate hyperparameter tuning. I still think there likely exists a transformer model that would
outperform this GRU baseline, I just was not able to find it here.
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Language Model Train Corpus B2T Validation Set Perplexity

Unigram B2T Train Sentences 383.82
Bigram B2T Train Sentences 219.99
Trigram B2T Train Sentences 455.96
Unigram Switchboard Corpus 392.81
Bigram Switchboard Corpus 116.54
Trigram Switchboard Corpus 57.40
Unigram Reuters Corpus 1778.46
Bigram Reuters Corpus 1295.53
Trigram Reuters Corpus 3178.61
GPT-2 N/A 168.46
OPT350M N/A 141.38

Table 2: Median perplexity of language models measured on sentences in the brain-to-text validation
set. Language models include unigram, bigram, and trigram models trained on the brain-to-text
training sentences, on text transcribed from a speech corpus (switchboard), and written text from a
news outlet (Reuters), along with pretrained large-language models, GPT-2 and OPT350M.

Figure 2: Performance of various transformers on phoneme prediction task compared to a state-of-the
art GRU model.

6 Analysis

Why does the trigram model trained on the Switchboard Corpus outperform GPT-2 on this task? To
get at this question, I examined example validation sentences, some where GPT-2 outperformed the
trigram model and some where the trigram model outperformed GPT-2 (Table 3). The first trend that
seemed to pop out to me was that GPT-2 seems to have lower perplexity than the trigram model on
longer and more complex sentences, such as "his voice was nearly drowned out by the crowd" and
higher perplexity than the trigram model on sentence fragments, such as "A little more flexibility".
This is reasonable because the language model can use a much longer context window to predict the
probability of words later in long sentences. The second trend that popped out to me was that GPT-2
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Table 3: Perplexity of different validation sentences
Validation Sen-
tences

GPT2 Perplexity Trigram Perplexity

A little more flexibil-
ity.

53.87 29.39

They even looked
halfway decent.

318.76 45.46

They are not sure of
themselves.

104.56 33.47

If you’re ever looking
for that.

201.61 28.71

A food processor. 728.54 2202.79
Two sides of the same
coin.

29.15 919.77

There is no timetable
for a decision.

21.61 66.68

His voice was nearly
drowned out by the
crowd.

27.1 98.81

seemed to perform worse with more "speechy" phrases like "if you’re every looking for that" and
"they even looked halfway decent" that would probably not appear very frequently in written text.

7 Conclusion

The main finding of this project is that a simple language model trained on a speech corpus may
be able to outperform more complex pretrained LLMs in representing the distribution of simple
sentences used in day-to-day speech. This suggests that rather than using pretrained LLMs out of the
box, finetuning on speech specific datasets may be an important step to improve performance of a
speech neuroprosthesis.

Although this conclusion is relatively straightforward, it has, to the best of my knowledge, not yet
been implement in speech BCI systems. Willett et al. (2023) used either ngram models trained on
openwebtext2 or a pretrained llm such as gpt-2 without additional finetuning.

I was not able to find evidence here that a transformer could improve performance on the neural
activity to phoneme mapping task. This result, however, may simply be the result of poor architecture
and/or hyperparameter choices.

competition.
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