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1 Abstract

Recent works on kernel-based attention such as [8] offer an alternative to classical atten-
tion with linear rather than quadratic time complexity, enabling transformer-like models to
efficiently process long sequences. However, when implemented naively, these algorithms
greatly underperform classical attention in speed and memory usage. In this work, we
demonstrate a hardware-aware linear attention algorithm, specially optimized for the Ten-
sor Processing Unit (TPU) chip, that is substantially faster than all baselines.

2 Related work

Many approaches to subquadratic sequence modeling have been explored recently. State-
space models (SSMs) have been heavily explored for NLP in recent years, with works such
as S4 [2] and S5 [5] demonstrating perplexity on language-modeling tasks that compares to
Transformers, but with far faster inference.

Long-context convolutional networks using Fourier transforms. Classical convolution
kernels are limited to a fixed context (due to the fixed dimensions of the kernel), making them
unsuitable on their own for language modeling, which involves long-horizon dependencies
between words and phrases. Works such as Hyena [4] take advantage of Fourier transforms
to apply convolution kernels with effectively unlimited context.

While linear attention has historically underperformed relative to traditional dot-product
attention, some new approaches apply better feature representations to boost performance.
This includes the Based architecture, which approximates softmax using a Taylor series,
and Porcupine [8], which applies an exponential activation function to obtain ”spikier” and
thus better-performing features.

Due to the simplicity of its computations, we believe linear attention plays to the
strengths of TPU hardware (very fast matrix multiplication). In constrast, state-space mod-
els and long-convolutional models depend on specific mathematical operations (associative
scans and Fourier transforms) that TPU hardware is not optimized for.

3 Approach

Kernel-based attention is commonly computed two different ways: using an inner product
between queries and keys, or using an outer product between keys and values. Although
these two algorithms produce the same output when given the same inputs, the time and
space complexity is not the same.
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3.1 Inner-product formulation
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The inner product algorithm requires O(n2) computation.

3.2 Outer-product formulation
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The outer product algorithm requires O(nd2) computation.

3.3 Optimization 1: Block-wise outer-product formulation

TPU programs operate in a cycle of load → process → store. We can take a simple matrix
multiplication C = AB as an example. While these devices can process matrix multiplica-
tions with extremely large dimensions, they are conducted in a block-wise manner (figure),
transferring blocks of A and B into memory and storing the output for a block of C.

Memory transfers account for the majority of the computation time when training large
neural networks [3], so we want to make as much of the computation happen in fast SRAM
as possible, minimizing transfers to and from the comparatively slower HBM main memory.
This motivates recent kernel fusion approaches such as FlashAttention [1].

Additionally, TPUs are optimized for matrix-matrix products. The bulk of their com-
putational capability comes from a dedicated matrix multiplication unit (citation), which
multiplies two m × m matrices to produce an m × m output (where m = 128 on recent-
generation TPUs). While they are also capable of vector and scalar operations, the available
computation power is severely limited compared to the matrix product.

Therefore, an optimized implementation for TPU has two main goals:
1. Minimize the amount of data transferred between HBM and SRAM.
2. Whenever possible, formulate all mathematical operations as products of two 128×128

matrices.
Note that the output at step i only depends on the cumulative sum of the outer products

up to i. This opens up the possibility to compute the output recurrently without having
to keep the entire O(nd2) outer product result in memory. Hence, the first optimization we
make is to reformulate the summation in a recurrent block-wise manner.

w The algorithm is as follows. Let b be the block size. ib is the index of the start of the
current block. Initialize the carry variables (ckv)ib and (ck)ib to zeroes.

ib = floordiv(i, b)
We split up the summations in the numerator and denominator into an intra-block term

and an inter-block (carry) term.
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The carry variables are updated as following:
(ckv)ib+b =

∑ib+b−1
j=ib

(kjv
T
j ) + (ckv)ib

(ck)ib+b =
∑ib+b−1

j=ib
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Since we only cache the carry variables instead of the full outer product at all sequence
indices, the memory requirement for the outer product is reduced from O(nd2) to O(d2).
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3.4 Optimization 2: Block-wise hybrid formulation

While the above approach greatly reduces the memory usage (satisfying goal 1), it still can’t
be implemented efficiently on TPUs.

When compiled for a TPU matrix multiplication core, the outer product kiv
T
i looks like

this:
[ki0ms0m][vi0ms0m]T

All of the zero columns/rows represent wasted computation, an artifact of padding the
vectors to make them into square matrices for the TPU matrix multiplication unit. This
results in a 128× speed penalty when m = 128. Ideally, we would avoid computing any
outer products due to this inefficiency. This motivates the next optimization, which brings
back parts of the original inner-product, quadratic-time algorithm.

In our proposed algorithm, the intra-block computations are performed with the inner-
product formula (O(b2) memory, O(1) time), and the inter-block computations are per-
formed with the recurrent outer-product formula (O(d2) memory, O(nb ) time). To ensure
square matrices, we set the block size b equal to the head dimension d. Thus, the overall
computational complexity is O(d2) in memory and O(nd ) in time.

Algorithm 1 Forward Pass

1: Let M be a lower-triangular b× b matrix with all nonzero elements equal to 1.
2: Initialize carry variables (CKV )ib and (CK)ib to zeroes.
3: Let ⊙ denote elementwise multiplication and ⊘ denote elementwise division.
4: For each block Qib , Kib , Vib of the input:
5: Attention scores computation for the current block:
6: Aib = M ⊙ (QibK

T
ib
)

7: Compute output for the block:
8: Yib = (AibV +Qib(CKV )ib)⊘ (Aib1b×b +Qib(CK)ib)
9: Update the carry variables:

10: (CKV )ib+b = KT
ib
Vib + (CKV )ib

11: (CK)ib+b = KT
ib
1b×b + (CK)ib

As these computations consist only of matrix-matrix products and elementwise opera-
tions, they can be performed efficiently on TPUs.

3.5 Computing the backward pass

We use recomputation, similar to [1], to avoid caching large tensors in HBM for intermediate
gradient computations. Like the forward pass, we operate over tiles of the input and transmit
information along the sequence through carry variables.

4 Experiments

We compare the following attention algorithms using a single attention head with dimension
128.

Optimized kernel attention: The main proposed approach of this work (described in
the Optimization 2 section above). Implemented in Pallas, a low-level language built on
JAX that offers finer-grained control over how computations are carried out on the TPU
hardware.
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Algorithm 2 Backward Pass

1: Let M be a lower-triangular b× b matrix with all nonzero elements equal to 1.
2: Let (CKV )if and (CK)if be the final values of the carry variables returned by the forward

pass. Their gradients (dCKV )ib , (dCK)ib are initialized to zero.
3: Let ⊙ denote elementwise multiplication and ⊘ denote elementwise division.
4: For each block Qib , Kib , Vib , dYib in reverse order of the input:
5: Update carry variables:
6: (CKV )ib = (CKV )ib −KT

ib
Vib

7: (CK)ib = (CK)ib −KT
ib
1b×b

8: Compute attention scores:
9: Aib = M ⊙ (QibK

T
ib
)

10: Compute intermediate variables for gradient computation:
11: Numerator: N = AibV +Qib(CKV )ib
12: Denominator: D = Aib1b×b +Qib(CK)ib + EPS
13: Compute gradients for numerator and denominator:
14: dN = dYib ⊘D
15: dD = −dYib ⊙ (N ⊘D2)
16: Compute gradients for attention scores, V , Q, (CKV )ib , and (CK)ib :
17: dAN = dNV T

18: dAD = dD1b×b

19: dAib = M ⊙ (dAN + dAD)
20: dV = (AT

ib
dN) + (Kib(dCKV )ib)

21: dQ = (dAibKib) + (dN(CKV )
T
ib
) + (dD(CK)Tib)

22: Update gradients of carry variables:
23: (dCKV )ib = QT

ib
dN

24: (dCK)ib = QT
ib
dD
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Figure 1: Runtime comparison of the forward and backward pass with baseline attention
algorithms. The experiments are carried out on a single TPUv4-8 node.

Inner-product kernel attention: While linear attention is seldom implemented like this
in practice due to the quadratic time complexity, it serves as an additional baseline. Imple-
mented in plain JAX and JIT-compiled.

Outer-product kernel attention: Baseline representative of common linear attention im-
plementations. Implemented in plain JAX and JIT-compiled.

FlashAttention [1]: The current state-of-the-art for hardware-optimized classical atten-
tion. Implemented in Pallas.

4.1 Results and Analysis

In terms of speed, our approach is more performant than every baseline for sequence lengths
of 2048 and greater. This demonstrates the advantages of using hardware-aware algorithms
for computing kernel attention.

The outer-product algorithm is by far the slowest, at least two orders of magnitude slower
than our optimized algorithm. This validates our hypothesis that the naive outer-product
attention algorithm is unsuitable for TPUs.

We had also intended to gather data on memory usage. However, we encountered diffi-
culties getting the Jax profiling tools to output memory usage data for the on-device TPU
memory. Despite this, we can anecdotally confirm from our testing that our algorithm per-
mits a far larger batch size before running out of memory, in comparison to the baselines,
pointing to its improved memory efficiency.
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4.2 Future work

We highlight two possible improvements that could potentially boost performance on lan-
guage modeling tasks.

4.2.1 Hardware-aware state expansion

The experiments in [6] show that model performance on challenging in-context learning
benchmarks such as MQAR scales with the hidden state dimensionality. Intuitively this
makes sense, because a model with a larger hidden state can store more information. The
authors demonstrate a computationally-efficient way to accomplish this for linear attention,
where the q and k vectors are up-projected to higher dimensionality after they have been
transferred from HBM to SRAM. This would be straightforward to add to our block-wise
linear attention algorithm, and could result in significant performance increases on recall-
intensive tasks.

4.2.2 Forgetting

The work in [7] demonstrates a Mamba-like state-space-model architecture optimized for
TPU. As in Mamba, their model can selectively forget or remember parts of the hidden
state at each timestep. The authors show that this allows for better length generalization on
language modeling and synthetic benchmarks. Again, this intuitively makes sense, because
without forgetting past information, the hidden state will become increasingly noisy/high-
entropy along the sequence as more information is added to it.

While forgetting could be accomplished with a simple, fixed exponential decay of the
hidden state (solving the increasing entropy issue), this would hurt in-context learning, as
the influence of the prompt on the model output would become lower and lower the more
tokens are generated. Instead, we believe an approach like [7] could work well, where the
model predicts a ”forget gate” value at each sequence step, selectively controlling how much
the hidden state decays at that particular step.

Further work would also include measuring the real-world impact on training and infer-
ence speed when our linear attention algorithm is used to construct a language model. We
have implemented a proof-of-concept for language model training using a modified version
of the Levanter framework (https://github.com/G-Levine/levanter), laying the groundwork
to evaluate the performance of multibillion-parameter-scale language models that use our
attention mechanism.

4.3 Conclusion

In this work, we have presented a highly-efficient hardware-aware algorithm for computing
linear attention on TPU. Based on the orders-of-magnitude speed improvement over the
baselines demonstrated in our experiments, we believe this is a promising method for training
future large language models on TPU.
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