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Abstract

Sentence embeddings are an important, but challenging domain of NLP. Recent
developments with self-attention, transformers, and BERT have allowed for a new
learned embedding paradigm. While these methods have made significant strides,
our paper aims to survey the recent advancements of contrastive learning on embed-
ding quality. Within this paper, we first aim to implement unsupervised SimCSE,
supervised SimCSE and DiffCSE, alongside extensions using data augmentation.
With these pretraining strategies defined, we additionally develop classification
heads for textual similarity, sentiment analysis, and paraphrase detection. Finally,
We assess each pretraining strategy on the downstream classification heads, with
the goal of finding the most performant architecture. Through our experimenta-
tion, we found that the author’s version of supervised SimCSE + our developed
classification heads performed best, placing us on the top ∼ 1

3 of leaderboard
submissions.

1 Key Information to include
• Mentor: Anirudh Sriram
• Contributions: Both Zach and George contributed implementations, experiments, and

writing. There is no discernable difference to report.

2 Introduction

Within the constantly-evolving NLP field, sentence embeddings have remained an incredibly central,
but difficult topic of exploration. For example, "The movie left her feeling terrible" differs by ∼1 word
from "The movie left her feeling terribly excited", yet the meaning conveyed is almost completely
different. While humans can understand these nuances, how can we convey such information to
computers, who have no underlying concept of language to fall-back on?

While the problem is difficult, improvements to embedding robustness affect large-scale systems like
Google search (Kobayashi and Takeda, 2000), as well as more concrete NLP tasks such as semantic
textual similarity, paraphrase detection, and text classifications.

The recent advents of self-attention and the transformer architecture (Vaswani et al., 2023) have
enabled a more efficient and scalable training paradigm. This was built further upon by BERT (Devlin
et al., 2019) which defines an efficient pre-training scheme to generate robust embeddings. Finally,
recent developments such as SimCSE (Gao et al., 2022a) and DiffCSE (Chuang et al., 2022) expand
upon BERT pretraining with new contrastive learning strategies (discussed further in the Related
Work section).

Within this paper, we first aim to compare the vanilla BERT, SimCSE, and DiffCSE pretraining
strategies, while proposing a new "augmented" Supervised SimCSE extension. Second, we develop
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3 task-specific classification heads on top of our embedding system to properly perform semantic
textual similarity, paraphrase detection, and sentiment analysis.

After experimentation and analysis, we found the original author’s implementation of SimCSE
performed the best upon semantic textual similarity, paraphrase detection, and sentiment analysis.
We believe this to be a indication of the importance on quality for supervised contrastive approaches.

3 Related Work

3.1 BERT

BERT Devlin et al. (2019) introduced a significant advancement within NLP by leveraging the
Transformer architecture to pre-train deep bidirectional representations from unlabeled text. This is
achieved through the use of a "masked language model" (MLM) pre-training objective, where random
tokens are masked out and the model is trained to predict them solely on their context. This enables a
deepr understanding of language context and relationships. By pre-training on a large corpus and then
fine-tuning for specific objectives, BERT has achieved SOTA in multiple downstream tasks including
sentiment analysis, text similarity and others.

3.2 Anisotropy and Contrastive Learning

Work by Ethayarajh (2019) suggested that learned sentence embbedings often suffered from an
underlying anisotropy problem. That is, embeddings take on a tight conal shape in vector space
(as opposed to a more uniformal distribution). This tight shape restriction could thus affect the
expressiveness of resultant embeddings.

Within the computer-vision space, work by Chen et al. (2020) had made significant strides to combat
anisotropy through a contrastive learning framework. Under contrastive learning, semanticaly similar
neighbors are brought closer together while semantically dissimilar neighbors are spread farther apart.
Within N mini-batches, contrastive learning operates under the following objective function:

− log
esim(hi,hj)/τ∑N
j=1 e

sim(hi,hj)/τ
(1)

Where (hi, hj) are hidden state representations of semantically similar inputs (xi, xj).

Specifically, Chen et al. (2020) found that semantically similar pairs (xi, xj) could be synthetically
created through data augmentation.

3.3 Unsupervised SimCSE

SimCSE (Gao et al., 2022a) was a recent development aimed at applying the contrastive learning
methodology to combat the anisotropy problem within sentence embeddings. Particularly, for every
input xi, an associated x+

i was created through dropout. The pair (xi, x
+
i ) were then encoded into

(hi, h
+
i ) and used to optimize the contrastive loss (equation 1).

3.4 Supervised SimCSE

Additionally, SimCSE devised a strategy for a supervised framework utilizing Natural Language
Inference (NLI) datasets. Under this premise, a tuple (xi, x

+
i , x

−
i ) are generated, where x+

i is a
separate sentence entailed to xi and x−

i is a seperate sentence contradictory to xi. This tuple is then
utilized in a modified contrastive learning objective function:

Lsupsimcse = − log
e

sim(hi,h
+
t )

τ∑N
j=1

(
e

sim(hi,h
+
j

)

τ + e
sim(hi,h

−
j

)

τ

) (2)
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With the goal that entailed hi, h
+
i pairs will occur closer together while contradictory hi, h

−
i pairs

will be pushed apart.

3.5 DiffCSE

DiffCSE (Chuang et al., 2022) is an extension upon the SimCSE contrastive learning paradigm.
Particularly, DiffCSE aims to introduce a separate, related task to the overall training framework.
While the contrastive learning objective remains the same, DiffCSE introduces an additional difference
prediction task with use of a discriminator neural network.

At a high-level , for every input sentence x, an additional x′ is created with probabilistic masking
applied. x′ is subsequently fed into a small, fixed (i.e without gradient updates) generator model in
order to generate mask word predictions labeled x′′.

x′′ is subsequently encoded and fed into the discriminator alongside the resultant embedding from
the unsupervised SimCSE process. The discriminator model will then use the embeddings of x′′ and
SimCSE’s embedding of x to determine whether each token was replaced. The resultant loss function
of DiffCSE therefore takes into account both the contrastive loss from SimCSE and the cross-entropy
loss from the discriminator D’s replacement predictions:

Ldiffcse = Lcontrast + Ldiscrim (3)

= − log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

(4)

+

T∑
t=1

(
− 1(x′′

t = xt) logD(x′′, h, t) (5)

− 1(x′′
t ̸= xt) log(1−D(x′′, h, t))

)
(6)

4 Approach

4.1 Pretraining Strategies

In order to pick the optimal pretraining strategy for downstream performance, we decided to create
our own implementations of BERT, Unsupervised SimCSE, Supervised SimCSE, and DiffCSE (more
information on these pretraining strategies can be found in the Related Work section).

We aim to deepen our understanding of the SimCSE model’s learning dynamics under different train-
ing conditions. Specifically, we investigate the effects of varying training data sizes and the integration
of additional training samples through dataset augmentation. These efforts are directed towards
optimizing the model’s performance and exploring the synergy between supervised and unsupervised
learning paradigms. Below, we detail the experimental setups employed in our investigation:

• Unsupervised SimCSE Experimentation: To assess how much data is needed for the
unsupervised SimCSE to effectively learn, experiments were conducted using different sizes
of the training data. This approach helps in understanding the impact of dataset size on the
model’s learning efficiency.

• Supervised SimCSE Experimentation: Experiments were conducted using two datasets
for the supervised SimCSE approach:

1. The original dataset curated by the authors. Gao et al. (2022b)
2. An augmented version of the dataset, which adds contradiction pairs from the MultiNLI

dataset. Since each pair being added does not have a corresponding entailment pair,
we apply dropout to create a synthetic entailed input. This is inspired by unsupervised
SimCSE’s use of dropout for introducing variability. We hope this will combine the
strengths of both supervised and unsupervised approaches. As an end result, we add an
additional 105k training samples to the dataset.
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4.2 Classification Heads

For classification, we have chosen to utilize task-specific classification heads on top of our pretrained
BERT models, the details of which can be seen below.

Final model design for the default project’s 3 downstream tasks.

Semantic Textual Similarity: For the STS task, we first calculate the cosine similarity between the
sentence embeddings of s1 and s2 and we feed the value to a two-layer MLP with ReLU activation.
(first layer of [1, 10] and the second [10, 1]).

Sentiment Classification For sentiment classification, sentence s is first encoded into rep-
resentative embeddings with BERT, before being fed into a 2-layer MLP with ReLU activation (first
layer of shape [768, 384], second layer of shape [384, 1]). Additionally, dropout is applied within the
layers during training.

Paraphrase Detection For paraphrase detection, sentences s1 and s2 are again first en-
coded into representative embeddings with BERT. In particular, the [CLS] token embeddings are
then concatenated before being once again passed into a two-layer MLP with ReLU activation (first
layer of shape [1536, 768], second layer of shape [768, 1]). Dropout is applied to the MLP during
training.

5 Experiments

5.1 Data

• 1 mil. Wikipedia sentences - Finetuning BERT using unsupervised SimCSE and DiffCSE
(Gao et al., 2022a).

• Stanford Sentiment Treebank (SST) - Used downstream for training/evaluating on senti-
ment analysis (Socher et al., 2013).

• Quora Dataset - Used downstream for training/evaluating for paraphrase detection.
• SemEval STS Dataset (STS) - Used downstream for training/evaluating for textual similar-

ity (Cer et al., 2017).
• SNLI (MacCartney and Manning, 2008) - Finetuning BERT using supervised SimCSE.
• MultiNLI (Williams et al., 2018) - Finetuning BERT using supervised SimCSE.

5.2 Evaluation method

5.2.1 Pretraining Evaluation Metrics

For the evaluation of our pretraining strategies we used:

• Alignment of positive embedding pairs (lower is better), which can be calculated via:

E(x,x+)∼ ppos
||f(x)− f(x+)||2 (7)

• Uniformity of all embeddings (higher is better) which can be calculated via:

logEi.i.dx,y∼ pdata
e−2||f(x)−f(y)||2 (8)

• Frozen Weights for Downstream Training, which only performs gradient steps on classifier
weights. This way we assessed the quality of the sentence embeddings passed to the
classifiers much faster than by finetuning the entire model.

4



5.2.2 Classifier Evaluation Metrics

Evaluation of the downstream multitask classifier can be divided into each particular NLP task:

• Sentiment Classification Average accuracy between predicted and true sentiment values.

• Paraphrase Detection Average accuracy between predicted and true paraphrase scores.

• Similarity Pearson correlation coefficient between predicted and true similarity scores.

5.3 Experimental details

5.3.1 Datascaling

It was often infeasible or unnecessary to train on 100% of the data, so we decided to implement
a sliding data-scale argument to our training algorithm. Particularly, datascaling "sliced" the data
training data (i.e a datascale of 0.1 would take the first 10% of the dataset) instead of sampling in
order to keep training runs deterministic.

Pretraining Strategies
For each pretraining strategy, the original datasets were provisioned, but would only retain x% of
data for training.

BERT Unsupervised SimCSE Supervised SimCSE DiffCSE
1 0.2 1 1
Final datascaling weights chosen across pretraining strategies.

Particularly, we found that unsupervised SimCSE performed somewhat better with a smaller datascale.

Classifier Finetuning
For the classification tasks, there was no data-scaling used during training.

5.3.2 Batch Size

Pretraining Strategies
An important aspect of consideration was the batch size given for pretraining. For contrastive learning,
the batch size can actually play a large role in the training quality. Referring back to 1 and 2, it should
be noted that N is a mini-batch of pairs. Therefore a small batch size could result in a noisy loss,
and inaccurate gradient updates. On the hand, a big enough batch size would cause out-of-memory
(OOM) errors with our available arsenal of GPUs. As, such the following batch sizes were selected:

Unsupervised SimCSE Supervised SimCSE DiffCSE
64 32 64

Final batch sizes chosen across pretraining strategies.

Classifier Finetuning
Unlike the pretraining strategies, the batch size for each classification task did not directly affect the
final loss.

STS SST Paraphrase
8 8 32

Final batch sizes chosen for classification tasks.

A point of distinction within our strategy was to increase the paraphrase batch size to 32, given it’s
abundance of training data. This increased batch size subsequently doubled our training speeds in
practice.

5.3.3 Misc. Hyperparameters

For the rest of the hyperparameters, we will provide a table of chosen values, alongside brief
explanation of the seen effect.

Pretraining Strategies
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Hyperparameter BERT Unsupervised SimCSE Supervised SimCSE DiffCSE
Learning Rate 10−5 10−5 10−5 10−6

Weight Decay 0.1 0.1 0.1 0.1
Dropout 0.1 0.1 0.1 0.1

τ NA 0.05 0.05 0.05
λ NA NA NA 0.005

Final miscellaneous hyperparameters chosen across pretraining strategies.

Learning Rate was found to be optimal around 10−5, with larger learning rates like 10−3 causing
training to oscillate. 10−6 was also tested, but found to be slightly worse across the board.

Weight Decay was included to combat against potential over-fitting, but was found to not have a
noticeable effect on the final output. In the end, we decided to include it in case of unseen benefits.

Dropout was also included as a method to improve robustness and was kept consistent at 0.1.

τ (from equation 1) remained consistent across runs at 0.05.

λ (from equation 7), was set at the original paper’s suggestion of 0.005.

Classifier Finetuning

Hyperparameter BERT Unsupervised SimCSE Supervised SimCSE DiffCSE
Learning Rate 10−6 & 10−3 10−6 & 10−3 10−6 & 10−3 10−6 & 10−3

Weight Decay 0.1 0.1 0.1 0.1
Dropout 0.1 0.1 0.1 0.1

Final miscallaneous hyperparameters chosen across pretraining strategies.

We chose different starting learning rates for the pretrained BERT model 10−6, and the classification
heads 10−3. This approach accelerated the classifier’s training process while simultaneously protect-
ing against forgetting previously acquired knowledge from the pretraining phase. We also tested a
learning rate of 10−5, however we noticed that the results were slightly worse across each task.

5.3.4 Performance Improvements

Max Sequence Length for Contrastive Strategies Given the importance of batch size within
contrastive learning, achieving a large batch size of 32 or even 64 required some augmentation of the
training data. Specifically, forcing all input sentences to conform to a max sequence length would
ensure a given batch would fit into GPU VRAM.

Unsupervised SimCSE Supervised SimCSE DiffCSE
64 100 64

Final sequence length chosen across contrastive learning strategies.

A key difference in our methodology for supervised SimCSE involves the handling of sentences
exceeding 100 tokens. Unlike the unsupervised version, where sentences were truncated, we opted to
exclude sentences beyond this threshold in the supervised model. This decision was made to preserve
semantic integrity, as truncating could lead to the loss of critical meaning. This modification impacted
only 0.2% of the pairs.

5.3.5 Round Robin Classification Training

While finetuning the classifier, we found that the method in which we train each downstream task
affected the final output quality. As such, we decided upon a "round-robin" approach in which each
task is trained for only 1 epoch, before being rotated to the next task. This is in direct contrast to
training each subtask to compeltion before switching.

5.3.6 Training Environment

For running our models, we opted to using Google’s colab environment as opposed to the GCP
platform. We found that there a couple instances in which GCP VMs would unexpectedly fail, so as
such colab proved to be the more reliable environment for training.
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Within colab, we used a mix between the T4 and V100 GPUs, with later experiments leaning more
heavily upon the V100 in order to speed up training times.

5.3.7 Training Time

The training times on a single V100 GPU are as follows:
Unsupervised SimCSE: 1 hour per epoch.
Supervised SimCSE: 45 minutes per epoch.
DiffCSE: 1 hour and 15 minutes per epoch.
Multitask Classifier: 25 minutes per epoch.

5.4 Results

5.4.1 Alignment & Uniformity across Pretraining Strategies

Model Epochs Alignment Uniformity
Unsupervised SimCSE 20% data 8 88.747 −132.213

Unsup. SimCSE 100% data 1 95.421 −137.453
Sup. SimCSE Author’s dataset 3 152.70 −3.505

Sup. SimCSE Augmented dataset 3 138.102 −3.402
DiffCSE 1 116.095 −153.726

Alignment & Uniformity results per pretraining strategy.

Lower alignment on the augmented dataset for Sup. SimCSE Augmented dataset is expected because
the L2 distance of the augmented entailment pairs should be smaller as they are the same sentences.
In addition, for the unsupervised SimCSE, we notice that we can reach a lower alignment and similar
uniformity using less data, but training for more epochs.

5.4.2 Classification Results

Pretraining Strategies

All models below were trained using 10 epochs.

Model SST accuracy Paraphrase accuracy STS correlation
Base BERT 0.502 0.779 0.842

Unsupervised SimCSE 20% data 0.490 0.838 0.869
Unsup. SimCSE 100% data 0.468 0.842 0.866

Sup. SimCSE Author’s dataset 0.511 0.832 0.877
Sup. SimCSE Augmented dataset 0.484 0.849 0.878

DiffCSE 0.441 0.839 0.853
Final results on DEV downstream tasks

From the dev results, it appears that the supervised SimCSE using the author’s dataset approach
appears to give the highest results upon the dev benchmarks. We were surprised to see that our data
augmentation approach didn’t result in any substantial performance increases to supervised SimCSE.
We theorize this may be a symptom of quality vs quantity, in which Supervised SimCSE benefits
more from curated, high-qualtiy data over a larger dataset.

We were also surprised to find that DiffCSE performed moderately worse than SimCSE on SST
accuracy and STS correlation (while paraphrase accuracy remained relatively consistent). One theory
we have is that the chosen STS and SST classifier heads might not have been optimal strategies for
DiffCSE embeddings. That may explain why paraphrase remained performant, but SST and STS saw
significant decreases.

5.4.3 Test Results

Model SST accuracy Paraphrase accuracy STS correlation
Sup. SimCSE Author’s Dataset 0.528 0.832 0.874

Sup. SimCSE Augmented dataset 0.500 0.842 0.874
Final test results on TEST downstream tasks
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6 Analysis

6.1 Similarity Classification Head

Something we found a bit strange was how the final MLP within our similarity classification head
operated. We found that a two-layer MLP with shapes [1, 10] and [10, 1] actually performed
surprisingly well.

Decomposing a scalar feature into 10 different scalars seems a bit counter-intuitive, but one possible
explanation is that MLP is learning a really specific non-linear scaling pattern that properly matches
between cosine similarity and the actual similarity threshold.

6.2 Paraphrase false-positive analysis

We observed that, in terms of accuracy, our paraphrase classification task has not been performing
at par with leading entries on the leaderboard. Consequently, we embarked on an investigation to
understand the potential causes behind this under-performance.

Confusion matrix for the paraphrase task.

By utilizing the confusion matrix, we can see that our false-positive predictions significantly outnum-
ber the false negative ones. Some examples include:

• How do I become great? - How do I become a great doctor?
• How can I lose fat as a teenager? - How can I lose fat as a 15 year old?
• How can i get freebies in india? - Where can I get Freebies in India?

We notice two cases where our model underperforms. The first one is when both sentences share a
large number of words with each other, and the second one is when they are semantically very close,
but not close enough to be paraphrases of each other.

7 Conclusion

As a result of our experimentation, we found that the author’s version of supervised SimCSE to achieve
the highest performance on textual similarity, sentiment classifcation, and paraphrase detection.
Additionally, we found that for unsupervised SimCSE, we could achieve similar performance results
by using less data for more epochs.

Overall, we feel that these results align pretty well with the respective SimCSE and DiffCSE papers,
but were surprised that the data augmentation technique for supervised SimCSE did not provide
adequate results. Additionally, we were surprised at DiffCSE’s lackluster performance on downstream
tasks. Future work could look into other augmentation techniques for contrastive learning.
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