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Abstract

As the prevalence of AI-generated text grows, it becomes increasingly necessary
to detect when text is AI-generated to maintain accountability, avoid plagiarism,
and many other reasons. In this project, our goal is to target style embeddings as
a core component to (1) further pretrain an existing style embedding model on
human and AI-written texts to detect whether the author of a text was a human or
an AI, and (2) to explore adversarial settings by determining whether a model can
detect and accurately classify mixed human-AI text. We implement three simple
classification heads on top of the embedding model: a Multi-Layer Perceptron,
K-Means Clustering, and K-Nearest Neighbors. Our findings reveal that we learn
a strong representation of human, AI, and mixed text in embedding space and in
natural language, outperform baselines on classification, and all with a model that
is more understandable and more efficient than current detection methods.

1 Key Information
• CS224N Mentor: Tathagat Verma
• External Collaborators: Abhay Singhal
• Contributions: Giulia and Ritika both worked on running experiments (baselines, mixset,

etc) and writing papers together. Giulia implemented the continued pretraining of the style
embedding model and Ritika implemented the data processing/testing of the mixset dataset
class, getting inputs from each other throughout the whole process. We credit our external
collaborator Abhay Singhal (and his original project partner, Daniel Ma) for the initial style
embedding idea, implementation of experimental infrastructure, and DetectGPT baseline.

• Our working branch of the GitHub repository can be found here: generally treat commits
from either Giulia or Ritika as joint, since we often work off VSCode LiveShare together.

2 Introduction

As the prevalence of AI-generated text grows, it becomes increasingly necessary to detect when a
piece of text is AI-generated to maintain trust and accountability, avoid plagiarism, identify high-
quality data for further large language model (LLM) training, and generally attribute authorship
and provenance correctly. The space of these models is therefore quite large, but many of the
models achieving state-of-the-art accuracy (>90 %) require expensive hardware to compute, lack
interpretability (especially to the average human who is being accused of plagiarism by one of these
models), and/or are slow to evaluate. Additionally, little research has been conducted into detecting
the difficult cases where a piece of text is created with some human and some AI involvement, which
is the most common use case in the real world.

In this paper, we create a model to detect whether a piece of text was written by a human, by an
AI, or a mixture; this model is high-performing, interpretable, and fast. We frame the AI text
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detection problem as an extension of the more general authorship verification problem, where the
goal is to determine which author in a set of known authors wrote a text. As a core component, we
target content-independent style embeddings, as introduced in Wegmann et al. (2022). The training
procedure compares and contrasts authors of texts while controlling for the content of the text to learn
a representation of authorship in embedding space. We can then train simple neural classification
heads on top of the embedding model.

3 Related Work

There has been some interest in using style as a metric for assessing language model involvement in
text generation, such as in Lazebnik and Rosenfeld (2024), which builds upon a style model from
Lazebnik and Rosenfeld (2023) to predict whether AI-generated text is present in scientific literature.
It is also critical to distinguish style from content; though they are often correlated (the content in a
scientific paper, for example, is most commonly described using formal language), it is possible to
discuss the same content in many different styles. As such, we use the procedure in Wegmann et al.
(2022) to achieve a robust, content-independent representation of text.

There are many models which attempt to detect AI-generated text, some which require some amount
of training and some of which are entirely zero-shot. GPTZero is a prominent example which is
commonly used industry and educational settings through their API (Tian and Cui, 2023), though it
has sometimes been criticized for lack of interpretability and imperfect classification (Tangermann).
A recent training-based model which has proven quite strong is Robust AI Detection via Adversarial
Learning, or RADAR (Hu et al., 2023), which pits a paraphraser model and a detector model against
each other in an adversarial training scheme. For zero-shot learning, a high-performing example is
DetectGPT, which uses a proxy LLM to estimate the curvature of the probability distribution near the
text (Mitchell et al., 2023). We employ RADAR and DetectGPT (actually, a faster implementation of
DetectGPT known as Fast-DetectGPT (Bao et al., 2024)) as baselines.

4 Approach

Our approach has two key components. Firstly, we continue pretraining the embedding model with
human and AI text. Following the approach in Wegmann et al. (2022), we also use a contrastive
learning task with a triplet loss and a conversation-based content control, where we consider two
utterances to be in the same conversation if they are responding to the same prompt. Each triplet
includes three utterances. Utterances (A, B) are written by the same author but different content, and
two others (A1, C) are discussing the same topic but have different style (here, same author is used
as a proxy for similar style). The model is then trained using a triplet loss, pushing two utterances
with similar style closer together and pulling apart utterances with a different style. This aims to
de-emphasize the importance of content defining an author’s style. The loss function can be found in
equation 1, where α is the margin (Wikipedia, 2024).

L (A,B,C) = max (∥f (A)− f (B) ∥2 − ∥f (A)− f (C) ∥2 + α, 0) (1)

Secondly, by using simple neural classification heads–such as a multilayer perceptron (MLP), k-
nearest neighbors (KNN), and k-means clustering–on top of the fine-tuned style embeddings to create
a model with few parameters, we maintain speed and computational efficiency. The embedding
model which we continued pretraining can be frozen, and the classification heads alone are used to
classify on other datasets. Thus, our method is easily extendable to further datasets with minimal
compute required, and as we see later, the simple classification heads are easy to understand.

5 Experiments

We describe our datasets, experiments, and details such as training time and hyperparameters.

5.1 Data

We test our implementation on four data sets. Three contain only pure human-written text (HWT) and
pure machine-generated text (MGT). These are the LLM Detect AI Generated Text (DAIGT) dataset
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from a recent Kaggle competition (Kłeczek, 2023), the Human-ChatGPT Comparison Corpus (HC3)
(Guo et al.), and Word Embedding Over Linguistic Features for Fake News Detection (WELFake)
(Verma et al., 2021). The fourth is MixSet, which contains several subsets of HWT, MGT, and mixed
human-AI text (Gao et al., 2024). We use a 80-20 train/test split, with the validation set being drawn
from 5% of the train set. Further details of the datasets can be found in the appendix.

5.2 Experimental details

5.2.1 Continued pretraining of style embedding model

We continue pretraining of the style embedding model in (Wegmann et al., 2022) using only the texts
found in the HC3 dataset. We initialize the model weights from the HuggingFace model card. We
first convert the HC3 dataset to a ConvoKit Corpus (Chang et al., 2020). We then use tools in the
style embeddings repository to generate 210,000 triplets in the train set, and 45,000 triplets each in
the validation and test sets (the same number of triplets as in (Wegmann et al., 2022)).

We train the model for one epoch, with the same hyperparameters as in (Wegmann et al., 2022): a
batch size of 8, with 10% of the training data used for warm-up steps, the Adam optimizer with a
learning rate of 0.00002 and a weight decay constant of 0.01, and a triplet loss with a 0.5 margin.
The resulting style embedding of each text is a 768-dimensional vector. Once the contrastive triplets
were generated, the model took approximately 4 hours to train on an NVIDIA-P100 GPU.

5.2.2 Classification heads

We consider three basic classification heads: k-means clustering, k-nearest neighbors (KNN), and a
multilayer perceptron (MLP). k-means and KNN are implemented with SciKit-Learn and are wrapped
with SciKit-Learn’s CalibratedClassifierCV, which performs Platt scaling with cross-validation on
the train set to calibrate the probabilities (Pedregosa et al., 2011). We determine the human cluster
in k-means by a majority vote on a held-out subset of the train set after training. KNN uses the
10 nearest neighbors for classification. The MLP has two hidden layers of size 100, uses ReLU
activations, a softmax on the output, and L2 regularization with a strength of 0.01. It is optimized
with Adam, with the default 0.001 learning rate, β1 = 0.9, and β2 = 0.999. To account for class
imbalance, particularly in MixSet, we optimize a cross-entropy loss weighted by class support.

We use 2-class classification on all datasets with all of the above classification heads. On the MixSet,
we consider all pure MGT and all mixed texts to be labeled as AI-generated in one experiment. We
additionally test 3-class classification on MixSet, where pure HWT and MGT are contrasted with
mixed texts, with the MLP and KNN only.

Generating embeddings for all texts in e.g. HC3, which has 85,000 examples, takes approximately
4 hours on CPU (about 6 texts/second) or 20 minutes on GPU. Once the embeddings are cached,
training on the classification heads is a matter of 2-3 minutes on CPU, and inference is completed
extremely fast–in 0.05s for the HC3 test set, or over 500,000 texts/second. Roughly, if the embeddings
were computed at inference time, inference could be completed at 6 texts/second on CPU.

5.2.3 Baselines

We compare performance with two strong, state-of-the-art baselines: Fast-DetectGPT (Bao et al.,
2024), which is zero-shot, and RADAR (Hu et al., 2023), which must be trained. For DetectGPT,
GPT-Neo 2.7B is used as the proxy model (Black et al., 2022). For RADAR, we finetune it for one
epoch on each of HC3, DAIGT, and WELFake individually, for fair comparison with our one epoch
training procedure on the style embedding model with HC3. It was trained for 3 epochs on MixSet
and a selection of pure HWT and MGT, since MixSet is much smaller. We use a 85-15 train/test split
and the same hyperparameters as in (Gao et al., 2024).

Finetuning RADAR on an NVIDIA-P100 took 3.5 hours. Inference is completed at approximately 15
texts/second on GPU, and would likely be significantly slower on CPU.
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5.2.4 Out-of-domain testing

We compare our model’s ability to generalize out-of-domain with the RADAR baseline (this is
nonsensical for DetectGPT, since it is zero-shot). We train each model on HC3 and test it on DAIGT
and MixSet 2-class.

5.3 Evaluation method

5.3.1 Quantitative metrics

To assess our model’s performance, we use two quantitative metrics. One is the F1 score, which
balances precision (true positives) and recall (number of correctly predicted positives) and is more
robust than raw accuracy. The other is the ROC-AUC, or simply AUC (Area Under the Curve of
a Receiver Operating Characteristic), which computes the area under the curve traced out by the
accuracy at different thresholds values; it can be interpreted as the probability of correct classification.
The metrics are both implemented with SciKit-Learn, weighted by class imbalance, for 2-class and
multiclass.

5.3.2 Qualitative metrics

We consider two qualitative metrics as well. Firstly, to determine how well the style embedding
model was able to distinguish the texts in embedding space, we plot the embeddings, using t-SNE
to perform a nonlinear dimensionality reduction of the embeddings from 768-dimensional space to
2-dimensional space. Secondly, to examine the content-independent style more directly, we use the
results of the KNN classifier to retrieve similar texts to a human or AI-written texts.

6 Results

We present the results of the binary classification in table 1, as compared to the baselines1. We bold
the highest-performing detector on each metric, where we consider two detectors to be tied if the
score is within ± 0.001 precision. Most of the our detectors tie or exceed the RADAR baseline,
and even the KNN classifier, which just uses the Euclidean distance of the raw embeddings, is a
significant improvement over DetectGPT.

Table 1: Binary Classification

Dataset Subset Eval Our Model Baseline
MLP K-Means KNN RADAR DetectGPT

DAIGT all
AUC 0.9984 0.7786 0.9932 0.9997 0.8772
F1 Score 0.9943 0.7868 0.9814 0.9971

HC3 all
AUC 0.9998 0.9924 0.9995 0.9999 0.9711
F1 Score 0.9987 0.9924 0.9987 0.9998

WELFake all
AUC 0.9952 0.4997 0.9945 1.000
F1 Score 0.9632 0.4933 0.9701 0.9987

MixSet 2 class
AUC 0.9792 0.7564 0.9442 0.9942 0.582
F1 Score 0.9563 0.6853 0.9535 0.876 0.635

In table 2, we examine the results of the three-class classification, as compared to the three-class
classifications carried out by the authors of (Gao et al., 2024) on DetectGPT and two model-based
detectors, ChatGPT Detector (Guo et al.) and Distillbert (Sanh et al., 2020) (also trained on the
MixSet and some pure HWT/MGT text). The 3-class F1 score using our method vastly outperforms
the baselines, but is slightly worse than the two-class classification.

1Our GPU was too small to actually run DetectGPT, but our external collaborator had previously computed
the AUC on DAIGT and HC3, so we report that. The authors of MixSet had run DetectGPT, RADAR, and
other baselines as well, so we use their results. The MixSet authors also implement the F1 score and AUC using
sklearn with the same function parameters.
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Table 2: MixSet 3 Class Classification {Human, AI, Mix}

Eval Our Model Baseline
MLP KNN DetectGPT ChatGPT Detector Distillbert

F1 Score 0.8710 0.8776 0.255 0.304 0.261

In Figure 1, it demonstrates the binary classification of each subset of the MixSet dataset. The
AUC and F1 scores are computed by testing an MLP classification head on our further pre-trained
embedding model. Apart from the two "MGT Adapt" subsets, our F1 scores for all other subsets are
higher then all baselines presented in the Gao et al. (2024) paper.

Figure 1: AUC and F1 Scores for All Subsets of MixSet

The out-of-domain test AUCs and F1 scores in table 3 are also significantly better than or equal to the
baseline.

Table 3: Out-Of-Domain Test Results

Train Dataset Test Dataset Eval Our Model Baseline
MLP K-Means KNN RADAR

HC3 DAIGT
AUC 0.8656 0.5438 0.8252 0.8028
F1 Score 0.7320 0.3119 0.7503 0.3262

HC3 MixSet 2C
AUC 0.4875 0.5323 0.4922 0.5330
F1 Score 0.4169 0.5811 0.4251 0.5474

In Figures 2 and 3, we visualize the 2-D reduced embeddings of the MixSet, in both a 2-class and
3-class setting, and of HC3. We represent the AI generated text embeddings with red, human with
blue, and mixed with purple in the 3-class case. Though there is some overlap, the AI-generated text
strongly clusters to the left of the plot, whereas there is a fairly strong human cluster to the right. The
mixed embeddings sit between the two in Figure 3.
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Figure 2: MixSet 2-Class Embeddings Figure 3: MixSet 3-Class Embeddings

Figure 4: Two Nearest Neighbors for a Human-Written Text

Figure 5: Two Nearest Neighbors for an AI-Written Text

Figure 6: Two Nearest Neighbors for a mixed Human and AI Written Text
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7 Analysis

7.1 Classification Performance

The MLP and KNN classification heads exhibit extremely strong performance on all the pure datasets
(HC3, DAIGT, WELFake) and the mixed data set, achieving AUCs and F1 scores greater than 0.95
and often above 0.99, roughly indicating that a text has a at least a 95% chance of correct classification
(K-means did not perform as well, but it is fairly weak and very initialization-dependent as a method).
It is clear that RADAR is an extremely strong baseline, achieving AUCs and F1 scores very near to 1
in every case but the MixSet. DetectGPT also performs well for being zero-shot, especially on HC3,
but it is still worse than either RADAR or our method.

Our frozen embedding model, coupled with the classification heads, recognizes the mixed human-AI
style far better than any of the baselines. Furthermore, when we consider three-class classification,
our method displays the additional capability of distinguishing mixed text from pure HWT and pure
MGT, whereas the baselines struggle severely. Recognizing mixed human-AI involvement as separate
from AI is often desirable–perhaps in a scenario where a human writer may want to employ an AI to
help clean up grammar, or where a human uses an AI for brainstorming and then reformulates the
text as their own, but it would still be impermissible to use entirely AI-generated texts or ideas.

Looking at Figure 1, we can track the performance of our model across different usages of AI for the
binary classification to understand which types of mixed text are easiest to detect AI involvement.
We see that the strongest performance comes in categories like "Humanize" and "Polish Sentence",
where "Humanize" refers to taking an AI-generated text and simply trying to insert perturbations
that sometimes are present in human style, like misspellings or abbreviations, while preserving the
underlying AI-generated ideas. "Polish Sentence" refers to an AI rewriting human sentences to make
them sound more clear, which may not always preserve human ideas as intended. In contrast, on data
sets which have comparatively little AI involvement, such as "Polish Token", where the AI purely
tries to correct spelling or grammar, the performance is lower, consistent with the fact that spelling
and grammar are not always indicative of style, depending on the context in human writing.

Interestingly, we have the most difficulty by far with "MGT Adapt", where a human author is
instructed to revise tokens or sentences which they perceive to be inconsistent with humanistic
writing to improve fluidity. These texts are most likely misclassified because though the base text is
AI-generated, the expert humans have done a good job modifying the text to "sound human." Our
model performs incredibly well when trying to classify and detect human-written text which has
been modified by an LLM. However, future work should further explore improving classification
of machine-written texts which is then modified by humans. That form of mix human-AI writing is
more difficult to detect, but also has many relevant use cases.

7.2 Embedding and Text Interpretability

The embeddings plot shows a relatively strong division between the classes. Figure 3 is especially
striking. Not only are the human-AI mixed text embeddings visually distinguishable from pure HWT
or MGT, but the mixed texts fall in between pure HWT and MGT geometrically. If the picture is this
clear in 2 dimensions, there must be something fairly close to two separating hyperplanes in 768
dimensions between the AI and mixed texts, and between the mixed texts and human texts.

We can interpret our method as well through the transparency offered by the KNN classifier. The
human examples in Figure 4 demonstrate a highly colloquial style common in Internet forums,
although the content is different–the text to be classified discusses history, whereas the next-nearest
one is about biology and the second-nearest is about science fiction. The AI-written examples in
Figure 5 are consistent with the authoritative, almost textbook-style writing that often emerges when
humans ask an AI to help them understand a topic, but again, the subject of each text is unique (earth
science, film history, and economics). Finally, the mixed examples in Figure 6 show both elements
of the authoritative AI writing style common in question-answering and a certain colloquial, almost
emotional human touch which is especially apparent in the third text. Similar to before, the nearest
texts maintained similar style but diverged in content. Plotting the embeddings and qualitatively
analyzing examples demonstrates the effectiveness of our further pretrained style embeddings model.
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7.3 Efficiency and Adaptation Across Domains

Referring back to the details of our experiments, generating all of the style embeddings for HC3 on
CPU takes about 4 hours. From there, the classification head is trained in a few minutes and inference
is extremely fast. Again, RADAR took 3.5 hours to train and another 20 minutes to evaluate on GPU.
So, it takes the same amount of time to train and evaluate our approach end-to-end on CPU as it
took the RADAR baseline on GPU. Furthermore, the embeddings only need to be cached by the
embedding model once; then, one can experiment with classification heads very quickly.

Even if a user of our model does not have enough data to train or continue to train one of the
classification heads, our out-of-domain test results again outperform the RADAR baseline, especially
for non-mixed data. The out-of-domain performance is slightly worse than DetectGPT, but given that
we could not even run DetectGPT for lack of compute, a typical user with limited compute would be
far better off with our approach. We also notice the difficulty of generalizing from training on pure
human or AI text only to testing on mixed data.

8 Conclusions and future work

Our contribution can be summarized in three main points.

Simple MLP and KNN classification heads are comparable to or outperform strong baselines
across domains. Our approach learns an improved representation of AI style by continuing pretrain-
ing on the embedding model. The additional use of a classification head, even a simple one like an
MLP, performs on par with or outmatches even the most powerful baselines, both within the same
domain as the training data and out-of-domain.

Content-independent style is preserved geometrically and linguistically. We confirmed that the
human style is recognizable quite distinctly from an AI author by analyzing the outputs of KNN.
Plotting the reduced embeddings allowed us to see that the authorship is preserved in embedding
space, with discernible classification boundaries and with the mixed texts sitting between the human
and AI text, clearly representing a linear mixture of human and AI style.

Our approach is faster, easier to extend, and offers greater interpretability than baselines.
Anyone can easily train a classifier on top of the embeddings with limited compute and achieve strong
results, even with a comparatively small dataset such as MixSet. In settings where AI text detection
is desirable and where a custom, relevant data set might exist–e.g. a teacher who has her students’
past essays or a news agency with an archive of articles–the embedding model which we continued
pretraining can be used out-of-the-box in conjunction with a classification head with minimal work
(even hyperparameter tuning is not really necessary). Again, the end-to-end training time on CPU
with our method is as fast as the baselines are on GPU, with dramatic speed improvements once
embeddings are cached.

The strong performance of KNN yields not only interpretability, as the author’s style can be seen by
comparing neighboring texts, but also recourse and accountability in settings related to plagiarism.
Conventional detectors in industry simply label a text as human or AI with some confidence or
probability. However, with our method, if a student is accused of plagiarism by an AI text detector,
one only has to look at the most similar texts to understand why a certain classification was made,
and from there it is easier to determine if the classification is borderline or erroneous.

8.1 Limitations and Future Work

Limitation in the Scale of the MixSet Dataset. Despite the wide coverage in types of texts, the
overall scale is relatively small. This could limit the comprehensiveness of model training and
evaluation. A larger dataset could be used to further pretrain our model.

Lower accuracy detecting machine-generated texts that are modified by humans. Further
pretraining and/or fine-tuning for specific use cases could improve the classification performance of
mix texts where humans modify AI ideas and content.

Exploring adversarial settings further. Implementing additional forms of mixed human-AI text
generation, testing adversarial prompts where LLMs are directed to write in a specific style/persona,
and further out of domain tests potentially for multiclass classification.
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A Appendix

Table 4: Dataset summary

Dataset Subset Description

DAIGT
human Student essays from Kaggle, persuasive essays from Persuade Corpus
ai Essays written by various AI models (ChatGPT, GPT-4, LLama,

Falcon, Mistral, Claude)

HC3

reddit_eli5 Humans and AIs respond to questions in the style of the popular
subreddit "Explain Like I’m 5"

open_qa Humans and AIs respond to open-domain questions
wiki_csai Humans and AIs respond to prompts collected from crawling

Wikipedia
medicine Humans and AIs respond to medicinal dialog
finance Humans and AIs respond to finance questions

WELFake all A collection of real, fake, and satirical news articles

MixSet

complete An LLM completes a text given 1/3 of a human-written text
polish An AI cleans up a human-written text, either at the token (grammati-

cal) or sentence-level
rewrite An LLM reads a human-written text and rewrites it
humanize A human (sometimes simulated with an AI) takes a machine-

generated text and introduces perturbations commonly found in hu-
man texts, such as spelling/grammar errors or abbreviations

adapt An expert human takes a machine-generated text and modifies it to
be fluent and natural similar to human linguistic habits

pure Fully human-written or machine-generated
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