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Abstract

The main goal of our project is to enhance the foundational model supplied by the Stanford
CS224N teaching team, aiming to optimize BERT’s performance in sentiment analysis, paraphrase
detection, and similarity assessment tasks. Our approach involves refining BERT’s sentence
embeddings by investigating several key improvements: comparing single-task and multitask
model architectures, increasing the dimensions of BERT’s embeddings, and utilizing embeddings
trained through contrastive learning. We thoroughly examined the impact of these enhancements
across the three downstream tasks. Our comprehensive report presents both quantitative data and
qualitative insights, providing a detailed evaluation of how each modification contributes to the
improved performance of our enhanced model.

1 Key Information

We are undertaking the default project option. Our mentor for this project is Yuan Gao. We do not
have any external collaborators, nor are we sharing this project with any other course.

In recognition of the collaborative efforts, Grace Yang and Xianchen Yang worked in close partnership
across all project facets, including the literature review, code implementation, analytical review, report
composition, and poster creation, thereby ensuring a comprehensive and unified contribution to each
extension

2 Introduction

In the dynamic field of NLP, transformer architecture, epitomized by BERT (Bidirectional Encoder
Representations from Transformers) Devlin et al. (2019), has dramatically enhanced text processing,
enabling deep contextual analysis of words in sentences. This advancement is pivotal for tasks like
sentiment classification, paraphrase classification, and semantic similarity prediction. Developing a
multitask model capable of performing these diverse tasks is challenging due to their unique linguistic
demands, yet presents exciting opportunities to uncover synergies between tasks.

The efficacy of this model can be greatly enhanced by transfer learning, especially in scenarios where
data availability is uneven across tasks. For instance, we hypothesize that a substantial dataset for
paraphrase classification could markedly boost performance in similarity prediction, especially in
cases where the latter suffers from data scarcity. In our project, we conducted empirical tests to
determine whether multitask learning allows a model to leverage insights from one task to augment
performance in another, thereby fostering a more holistic and efficient approach to learning.

Our project aims to extend BERT’s capabilities, focusing on optimizing sentence embeddings for
outstanding performance across chosen tasks. We explored the nuanced engineering of minBERT
and its downstream structures, adopting a multitask approach that integrates shared BERT layers
with task-specific heads. This design exploits common linguistic features across tasks while allowing
for precise adjustments via task-specific heads. In particular, we investigated the effects of adding a
shared layer before task-specific heads for paraphrase detection and similarity prediction, assessing



this setup against alternatives without such shared layers. Additionally, we experimented with varying
approaches in task-specific heads, like contrasting the concatenation of two sentence embeddings
with the concatenation of two input sentences separated by a [SEP] token to create a single sentence
embedding.

To deepen the model’s interpretation of text, we also expanded BERT’s embedding dimensions, with
the aim of capturing a broader range of textual nuances and thereby enrich the model’s analytical
depth. Furthermore, we harnessed contrastive learning to enhance the model’s ability to discern
subtle differences between sentences. Our holistic approach to model optimization involved carefully
calibrating the learning process across different tasks, ensuring that advancements in one area do not
compromise performance in others.

3 Related Work

This section outlines significant contributions in the areas of multitask fine-tuning and contrastive
learning of sentence embeddings, providing a foundation for our project’s methodologies.

3.1 Multitask Fine-Tuning

BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
Stickland and Murray (2019) introduced Projected Attention Layers (PALs) to enhance BERT’s
multitask learning efficiency by using task-specific attention projections to reduce computational
load. This method highlights the benefits of task-specific adaptations within a shared architecture,
influencing our approach to shared and task-specific layers.

MTRec: Multi-Task Learning over BERT for News Recommendation Bi et al. (2022) demonstrated
multitask learning’s impact on news recommendation systems with BERT, optimizing tasks like user
engagement and content categorization simultaneously. MTRec’s success underscores multitask
learning’s applicability across various domains, supporting our project’s multitask strategies.

3.2 Contrastive Learning

SimCSE: Simple Contrastive Learning of Sentence Embeddings Gao et al. (2021) effectively en-
hances sentence embedding learning through contrastive learning, training models to differentiate
between sentence pairs. Utilizing unsupervised and supervised BERT base models, they attained
76.3% and 81.6% Spearman’s correlation respectively on STS tasks, guiding our application of
contrastive learning to deepen text understanding in our target tasks.

4 Approach

We began our project by successfully building upon and completing the implementation of minBERT
and the Adam optimizer, as detailed in the first phase of our project documentation. This foundational
work, including architectural and implementation specifics, is thoroughly described in the project
handout. In the subsequent phase, we shifted our focus to enhancing the model’s efficacy on three
downstream tasks, employing various extension techniques to achieve this goal.

MinBERT’s architecture concludes with a final hidden layer that generates a 768-dimensional
embedding for each input token, encapsulating the full contextual information of the sentence thanks
to the attention mechanism. Given that each sequence is initiated with a [CLS] token, we derive the
sentence’s overall embedding from this [CLS] token’s embedding, which serves as a comprehensive
representation of the input for downstream applications.

4.1 Baseline Model

When developing our baseline model, we began with a simple method: freezing all BERT embeddings
and focusing exclusively on training the task-specific heads.

Diverging from this initial method, we then fine-tuned Min-BERT individually for each of the three
tasks. For sentiment classification, our design includes a structure with a dropout layer followed by a
linear layer. For paraphrase classification and similarity prediction, we adopted a novel approach
using cross-attention mechanisms. This method links sentences more directly by omitting the [CLS]
token from the second sentence and combining the sentences with a [SEP] token. As a result, a single
pass through Min-BERT produces a comprehensive embedding from the [CLS] token, effectively
capturing the nuanced relationship between sentences. This technique is preferred over concatenating

2



two 768-dimensional embeddings, as it has been shown to yield superior results, as detailed in our
further analysis. Specifically, for the similarity prediction task, we applied a sigmoid function on the
model’s final output. This approach ensures that the predictions are confined within a specific range,
making the mean squared error (MSE) measurement more relevant and insightful.

4.2 Extension 1: Multitask Training

We noticed the limited number of training samples in the STS dataset. Considering the substantial
similarity between the paraphrase detection and similarity prediction tasks, coupled with the extensive
size of the QUORA dataset, we hypothesized that the knowledge gained from paraphrase detection
could enhance the model’s capability in similarity prediction. This insight led us to adopt a multi-task
learning strategy, updating minBERT and its associated heads collectively, rather than fine-tuning
separate BERT instances for each task.

Given the disparate sizes of the datasets for our three tasks, we propose a sequential training approach
for each task within individual epochs. This method, we believe, is preferable to employing a custom
dataloader with sampling techniques designed to balance the dataset sizes. Sequential training ensures
that all available data are fully utilized and increases time efficiency. The model is updated at the end
of each batch of tasks, allowing a more cohesive and comprehensive learning process that leverages
intertask relationships to improve performance across the board.

The order in which tasks are presented during training can impact the model’s performance across
all tasks. Our observations reveal that the paraphrase detection and similarity prediction tasks do
not offer substantial transferable benefits to sentiment classification. This is primarily due to the
potential for conflicting gradient directions between these tasks, where enhancing performance on
either the paraphrase or similarity prediction tasks may inadvertently detract from the model’s ability
to accurately perform sentiment classification.

4.3 Extension 2: Paraphrase and Similarity Prediction Downstream Architecture

For the paraphrase and similarity tasks, which both involve analyzing pairs of sentences, we inno-
vated beyond processing sentences separately. Instead of passing each sentence through minBERT
independently and later concatenating their embeddings, we refined our approach by directly linking
the sentences. This was achieved by discarding the [CLS] token of the second sentence and merging
the sentences with a [SEP] token. Consequently, a singular pass through minBERT now yields a
pooled embedding derived from the [CLS] token, effectively capturing the inter-sentence relationship.

This methodological enhancement allows for a more sophisticated semantic analysis. Unlike the
simpler approach, where tokens in the second sentence were isolated from those in the first, our
revised strategy ensures that every token can interact across sentence boundaries. This cross-sentence
attention mechanism facilitates a deeper semantic comparison, marking a significant advancement
over the baseline model in understanding the nuances between paired sentences.

We recognize that paraphrase detection and similarity prediction tasks share a fundamental similarity,
with the latter essentially representing a regression-based variant of the former. Given this conceptual
overlap, we delved into the potential benefits of integrating a shared layer before their respective
task-specific heads. This exploration involved comparing the performance of models with and without
these shared layers, with the aim of discerning the impact of this architectural modification. Our
hypothesis is that the weights of the shared layers could be effectively transferable between these
two closely related tasks, thereby leveraging their intrinsic similarities to enhance overall model
performance.

4.4 Extension 3: Contrastive Learning Embeddings

We hypothesized that the embeddings learned from contrastive learning could improve performance
in tasks where understanding subtle differences and similarities between sentences are crucial.
SimCSE learns to embed sentences such that similar sentences have similar embeddings. It is trained
in a supervised fashion by utilizing the same sentence with different dropout masks as positive
pairs and sentences in the same batch as implicit negative samples. By shifting from using the
base BERT embeddings to “sup-simcse-bert-base-uncased” embeddings published by the SimCSE
researchers, this extension aims to determine if these supervised contrastive embeddings offer superior
performance on downstream tasks by providing richer sentence context and capturing more nuanced
semantic relationships, thanks to their training on a diverse set of contrastive text data.

3



Figure 1: cross attention architecture(left)

Figure 2: Supervised SimCSE(right)

4.5 Extension 4: Scaling up to 1024 Large BERT

In this extension, we substituted the standard BERT model (which has embedding size of 768) with its
larger counterpart, BERT Large (featuring an embedding size of 1024), to explore whether an increase
in the number of parameters can offer more nuanced sentence context for various downstream tasks,
potentially enhancing overall performance.

5 Experiments

5.1 Data

Four datasets are leveraged to assess and enhance our model’s proficiency across a range of NLP
tasks:

• Stanford Sentiment Treebank (SST): A cornerstone for sentiment analysis research, this
dataset includes 11,855 sentences from movie reviews. Each sentence, along with 215,154
parsed phrases from the Stanford parser, is annotated with labels ranging from negative to
positive.

• CFIMDB: Geared towards sentiment analysis, CFIMDB features 2,434 movie reviews
with binary sentiment labels of negative or positive, providing a focused dataset for binary
classification tasks.

• Quora Dataset: A vital resource for paraphrase detection, this dataset encompasses 400,000
question pairs, each tagged with binary labels to signify whether they are paraphrases of
each other, facilitating the training of models to recognize textual parallels.

• SemEval STS Benchmark Dataset: Key to evaluating semantic similarity, it consists of
8,628 sentence pairs, each pair rated on a nuanced scale from 0 (no similarity) to 5 (high
similarity), offering a diverse range of examples for nuanced semantic understanding.

5.2 Evaluation Method

For evaluating our model, we adhered to the primary evaluation metrics specified for the standard
project. In detail, we reported classification accuracy for both the sentiment classification and
paraphrase detection tasks. For the semantic textual similarity task, we provided Pearson’s correlation
coefficient. The development leaderboard ranking is determined by a weighted average of these three
scores, assessed on the development set. We employ these metrics to refine our model, selecting the
optimal version for final submission to the test leaderboard.

5.3 Experimental Details

In our research, we standardized certain experimental configurations across all trials. Each baseline
model and modified versions were subjected to a training regimen spanning 10 epochs, with the
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optimal checkpoint being archived for subsequent analysis. For the initial phase of training, where
BERT’s parameters were frozen and only the heads were trained, we employed a learning rate of
η = 1e− 3. The fine-tuning model used a reduced learning rate of η = 1e− 5. Uniformly, dropout
layers were set with a dropout probability of 0.1 to mitigate overfitting. Considering CUDA memory
limitations, we opted for a batch size of 64 for the SST and STS datasets and a smaller batch size of
16 for the Quora dataset. The Adam optimizer was configured with a weight decay parameter of 1e-4
to regularize the model and prevent coefficient inflation.

6 Results

We evaluated the baseline model and models with different extensions on the development set and
the quantitative results are detailed in ??.

Model Type SST-5 (dev) QQP (dev) STS-B (dev) Overall
Baseline (single task)
1. Bert pretraining + Cross 0.385 0.683 0.446 0.505

2. Bert Finetune + Cross 0.525 0.891 0.868 0.783
Multitask
3. Base Bert 0.510 0.777 0.255 0.514

4. Base Bert + Cross 0.490 0.890 0.780 0.720

5. Large Bert + Cross 0.330 0.838 0.819 0.662

6. Base Bert + Contrastive 0.530 0.762 0.247 0.513

7. Base Bert +
Shared Layer + Cross 0.48 0.88 0.785 0.715

8. Base Bert +
Contrastive +
Shared Layer + Cross 0.510 0.885 0.790 0.763

Table 1: Development Accuracy of Baseline Model and Models with Extensions

For the baseline model, we observed that fine-tuning yielded significantly superior results compared
to merely freezing BERT and training task-specific head weights alone. This can be ascribed to
the fine-tuning process’s capacity to adapt the pre-trained model’s parameters to the nuances of the
specific task at hand, thus enabling more precise feature extraction and a better understanding of the
task-specific data.

In our multitask extensions, we observed a counterintuitive outcome: the multi-task models, which
were expected to leverage shared representations to enhance performance across tasks, actually under-
performed compared to their single-task counterparts. It has been noted that the highest-performing
models for each task are those where BERT has been fine-tuned on a single task alone, augmented
with cross-attention mechanisms. This trend points to a limited transfer learning benefit within
the multi-task framework, suggesting that the inter-task gradient interference might be detrimental.
Such interference seems to impede the multi-task model’s learning, preventing it from reaching the
effectiveness of models fine-tuned on isolated tasks. These findings underscore the complexity of
multi-task learning and indicate that, at least for our specific tasks, dedicated models with tailored
attention mechanisms outstrip the generalized approach of multi-task learning.

While the multi-task model incorporating the most extensive range of extensions (cross attention
+ shared layer + contrastive loss) achieved the highest results, the margin of improvement was
marginal. This modest enhancement suggests that the breadth of the extensions did not substantially
contribute to the model’s final performance, indicating that further investigation into the efficacy of
these extensions is necessary.
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We observed a remarkable improvement in similarity prediction performance when employing a cross-
attention architecture, which elevated the score from a mere 0.255 to an impressive 0.780 (3 vs 4).
This substantial increase can be attributed to the cross-attention mechanism’s ability to directly model
interactions between pairs of inputs, as opposed to merely concatenating two sentence embeddings.
This direct interaction allows the model to capture nuanced relationships and fine-grained alignments
between elements of the input pairs, thereby facilitating a deeper understanding of similarity. The
inclusion of a shared layer between paraphrase detection and similarity prediction tasks results in
only marginal performance improvements (4 vs 7). While the deployment of a larger BERT model
enhances the similarity correlation score by 0.04, it detrimentally affects the performance on the other
two tasks (4 vs 5). This observation suggests a trade-off between specialized improvement in one area
and overall task performance, highlighting the challenge of balancing task-specific enhancements
with general model effectiveness.

In our approach to optimizing performance for test leaderboard submission, we combined the outputs
of various models through an ensemble technique. This method involved aggregating the predictions
from our top-performing models (single task). The result of this ensemble approach led to a significant
improvement in our model’s performance, achieving an overall test accuracy of 78.7% 2

Overall accuracy SST acc paraphrase acc STS corr
0.787 0.538 0.891 0.864

Table 2: Test Accuracy

7 Analysis

In addition to evaluating our model’s accuracy, we conducted a qualitative analysis to pinpoint specific
instances where the model underperformed across the three tasks. This investigation aimed to uncover
the underlying weaknesses and identify some of the causes of these errors.

Figure 3: Confusion Matrix of Sentiment Classification (left)

Figure 4: Confusion Matrix of Paraphrase Detection (right)

We generated a confusion matrix for the sentiment classification task 3 to assess the model’s accuracy
across various label subgroups. Notably, the model predominantly errs in distinguishing between
closely related categories, often misclassifying “neutral” sentiments as “somewhat negative” and
“negative” sentiments as “somewhat negative.” This tendency towards misclassification probably
stems from the inherent complexities of a multiclass classification challenge involving five distinct
classes, compounded by the subjective biases present in human-labeled data.

As shown in 3, our similarity prediction model tends to make mistakes particularly in instances where
one sentence in the pair acts as a short summary of the other, omitting several details. Despite the
dataset’s true labels often mark these pairs with high similarity, our model frequently predicts a lower
similarity score. This discrepancy can be attributed to issues related to the quality of the data. Upon
closer examination, we observe that there’s a notable inconsistency in how pairs of sentences with
omissions are labeled in terms of their similarity - some are rated as having low similarity while
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others are considered highly similar. This variability probably stems from the subjective nature
of human labeling, leading to inconsistencies in the training labels. Such inconsistencies present
significant challenges for the model, making it prone to errors when assessing the similarity of
sentences where one is essentially a condensed version of the other. This insight points to the need
for a more standardized approach to labeling sentence pairs, especially in cases involving summaries
or omissions, to improve the model’s accuracy in these scenarios.

Sentence1 Sentence2 Predicted Similarity
A girl is talking to her dad on a cell-
phone.

a girl is talking on her phone. 0.29 0.88

There are three options: There are only three options: 0.46 1.00
It’s also a matter of taste. It’s definitely just a matter of prefer-

ence.
0.32 1.00

I don’t see why there should be any
problem with this whatsoever.

I don’t see why this could be a prob-
lem.

0.45 1.00

Table 3: Similarity Prediction Hard Cases

As shown in 4, the model demonstrates a propensity to assign higher similarity scores to sentence
pairs that share most of their lexical choices and syntactic structures, despite the presence of a few
divergent words that significantly alter the meaning of sentences. This indicates a nuanced challenge:
the model’s current metrics for similarity may not sufficiently account for the semantic impact
of key terms, thus overlooking the substantial shifts in meaning that can arise from minor lexical
substitutions.

Sentence1 Sentence2 Predicted Similarity
China stocks open higher Monday China stocks close lower on Thurs-

day
0.71 0.20

Use of force in defense of person.-A Use of force by aggressor. 0.76 0.24

Table 4: Similarity Prediction Hard Cases

We observed a similar trend of model relying on superficial lexical choices and structures rather than
semantic meaning of key terms to classify paraphrase as shown in 5. The confusion matrix for the
paraphrase detection task 4 reveals a higher false positive rate compared to the false negative rate,
indicating the model’s difficulty in accurately identifying non-paraphrase pairs as such. This suggests
a challenge for the model in correctly predicting true negatives, where it more frequently errs on the
side of mistakenly identifying unrelated sentences as paraphrases.

Sentence1 Sentence2 Predicted is_duplicate
Is there any evolutionary advantage
of baldness?

Was there any evolutionary advan-
tage for beards?

1 0

Can a physicist be an engineer? Can a person be a physicist and an
engineer?

1 0

Table 5: Paraphrase Detection Hard Cases

8 Conclusion and Future Work

In this study, we aimed to enhance the base model provided by the Stanford CS224N teaching
team, with the goal of improving BERT’s effectiveness in sentiment analysis, paraphrase detection,
and similarity assessment. Our approach involved refining BERT’s sentence embeddings through
innovative modifications to the multitask model architecture and adjustments in the embedding
dimensions. We utilized embeddings trained via contrastive learning and leveraged the power of
multitask learning to boost the model’s adaptability across these varied tasks.

Our analysis yielded several key insights:

7



• Fine-tuning BERT significantly outperforms strategies that involve freezing BERT while
only training the task-specific head weights.

• Contrary to expectations, the single task baseline models surpassed the multitask model,
suggesting that gradients from different tasks may be conflicting, to the detriment of overall
performance.

• The enhancements brought about by the inclusion of contrastive loss and shared layers
were found to be minimal, indicating these strategies may not substantially contribute to the
model’s performance in our setup.

• Incorporating a cross-attention architecture led to a considerable improvement in similarity
prediction, underscoring the value of direct interaction between pairs of inputs over simple
concatenation of sentence embeddings.

These findings, underscored by both quantitative metrics and qualitative analyses, indicate that while
certain strategies significantly enhance performance in specific tasks, others offer limited benefits.
This nuanced understanding directs us towards more targeted and efficient methods for improving
sentence embeddings, emphasizing the need for fine-tuning and task-specific architectural decisions
to achieve more adaptable and robust models.

Looking ahead, we plan to incorporate cutting-edge methodologies from S-SimCSE, specifically
focusing on increasing the dynamic variability of dropout and implementing adaptive sentence-wise
masking Zhang and lan (2021). Such enhancements are expected to further boost the model’s
ability to generate nuanced sentence embeddings that capture the essence of the text more accurately.
Additionally, we aim to introduce gradient surgery techniques into our multitask learning framework
Yu et al. (2020). This step is designed to harmonize the gradient directions emanating from different
tasks, mitigating potential conflicts, and fostering a more synergistic learning environment. We also
aim to use SMART regularization technique to prevent overfitting caused by aggresive fine-tuning
Jiang et al. (2020). Through these efforts, we anticipate not only elevating the model’s current
capabilities but also setting a new benchmark for multitask learning in natural language processing.
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