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Abstract

This project delves into sophisticated techniques for fine-tuning the BERT model,
aiming to boost its effectiveness across three specific sentence-level tasks: sen-
timent analysis, paraphrase detection, and semantic textual similarity. The core
objective is to refine BERT’s embeddings for efficient multi-task learning, ensuring
that the performance of individual tasks remains unimpacted. We experimented
with a variety of pooling strategies, loss-balancing approaches, and parameter adap-
tation methods to discover an optimal mix that suits the learning goals of each task.
Notably, we introduced a hybrid multi-task training curriculum that outperformed
both traditional sequential training and naive multi-task training approaches. Our
exploration of four unique parameter adaptation strategies identified that a synergy
between low-rank and top attention methods yields the best outcomes. The pinnacle
of our efforts was achieving an overall accuracy of 0.759 on the test dataset, with
task-specific performances of 0.506 on the SST dataset, 0.856 on the Quora dataset,
and 0.830 on the STS dataset, indicating a significant advancement in multi-task
learning capabilities.

1 Key Information to include

• Custom or Default Project: Default Project

• Mentor: Anirudh Sriram

2 Introduction

Natural Language Processing (NLP) stands at the forefront of enabling machines to understand,
interpret, and respond to human language in a valuable way. Among the plethora of tasks that NLP
tackles, sentence-level undertakings such as sentiment analysis, paraphrase detection, and semantic
textual similarity are pivotal for a range of applications, from automated customer service to content
analysis and beyond. However, the intricacies of human language, including its implicit meanings,
nuances, and context dependencies, make these tasks particularly challenging.

The advent of models like BERT (Bidirectional Encoder Representations from Transformers, Devlin
et al. (2018)) has significantly advanced the field’s capabilities. However, while BERT provides a
robust foundation for addressing diverse NLP tasks, its standard fine-tuning process often leads to
suboptimal performance when applied across multiple distinct tasks simultaneously. This limitation
primarily arises due to task interference, where the learning from one task can negatively affect the
performance on another, and the challenge of effectively balancing multiple objectives within a single
model architecture.

Current methods attempt to mitigate these issues through various strategies, such as task-specific
layers or fine-tuning separate models for each task. However, these approaches can be inefficient and

Stanford CS224N Natural Language Processing with Deep Learning



fail to exploit the potential synergies between tasks. Additionally, they may not adequately address
the problem of loss imbalance, where differences in task difficulty or dataset size lead to skewed
learning priorities.

This project aims to address these challenges by exploring advanced fine-tuning methodologies
that leverage the strengths of the BERT model while minimizing the weaknesses associated with
multi-task learning. By incorporating Projected Attention Layers (PALs), developed by Stickland and
Murray (2019), loss-balancing techniques, and an originally developed multi-task training curriculum,
this project seeks to harmonize the learning objectives across different tasks, thereby reducing task
interference and promoting effective knowledge transfer.

Our results demonstrate notable improvements over baseline models, achieving an overall accuracy
of 0.759 on a composite test dataset. Specifically, we observed scores of 0.506 on the SST dataset
(sentiment analysis), 0.856 on the Quora dataset (paraphrase detection), and 0.830 on the STS dataset
(semantic textual similarity). These outcomes not only signify the effectiveness of our approach in
enhancing multi-task learning but also offer valuable insights into the dynamics of task interactions
within the BERT framework.

In the following sections, we delve deeper into the problem domain, review related works, outline
our methodology, present detailed experimental results, and discuss the implications of our findings
for future research in multi-task NLP.

3 Related Work

Sentence Bert Reimers and Gurevych (2019) introduces Sentence-BERT (SBERT), a modification
of the pretrained BERT network using siamese and triplet network structures. This adaptation allows
for the efficient computation of semantically meaningful sentence embeddings, significantly reducing
the time required for similarity searches from hours to seconds while maintaining high accuracy, and
thereby making BERT feasible for semantic similarity search and clustering tasks. In this project, we
leverage the SBERT architecture as the task-specific layer for each task.

Parameter-efficient Strategies The technique of fine-tuning pre-trained models has emerged as a
powerful transfer learning approach, notably through the success of BERT (Devlin et al. (2018)).
While BERT’s architecture has provided a solid foundation for addressing diverse NLP challenges,
the process of fine-tuning presents a challenge in terms of parameter efficiency, particularly when
adapting to multiple downstream tasks. This limitation forms the basis for our exploration into more
parameter-efficient strategies.

Stickland and Murray (2019) introduced the concept of Projected Attention Layers (PALs), providing
an innovative method to boost BERT’s multi-task learning capabilities by integrating small, task-
specific layers. This approach helps maintain the model’s parameter efficiency while enhancing
its adaptability to various tasks. Furthermore, Houlsby et al. (2019) propose a variation of PALs,
employing slightly different adapter modules that substitute the multi-attention mechanism with an
MLP (Multilayer Perceptron). In this project, we have implemented four types of methodologies from
these studies and have combined two of them to enhance our baseline method, aiming to effectively
optimize multi-task performance.

Loss-balance Strategies The loss imbalance problem in multitask learning refers to the challenge
of balancing different tasks during the training process, where differences in the importance, scale,
or difficulty of tasks can lead to suboptimal learning and performance. In multitasking settings, it’s
crucial to ensure that no single task dominates the training process, allowing all tasks to contribute
effectively to the learning of shared features.

Several loss-balance techniques have been developed to address this issue. Chen et al. (2018)
introduced GradNorm, which normalizes the gradients of each task’s loss to prevent any single task
from dominating the training process. Uncertainty weighting, developed by Kendall et al. (2018),
uses homoscedastic uncertainty to derive a multi-task loss function, allowing optimal balance between
regression and classification losses. This project leverages a method called dynamic weight average,
introduced by Liu et al. (2019), which dynamically adjusts the weights of different tasks based on
their performance or importance during the training process.
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In this work, we use these methods as an extension of the baseline method. Besides, we also integrate
these methods with other techniques such as a multi-task training curriculum to simultaneously
improve the multi-task performance.

4 Approach

Model Architecture The backbone of miniBERT and the sentiment analysis head are identical
to those in part one of the default project. Regarding the other two tasks, Reimers and Gurevych
(2019) suggested specific architectural frameworks for sentence-pair tasks, designed particularly for
classification and regression problems. Influenced by this, I opted to use Figure 1 for the paraphrase
detection task, which is a Siamese network structure (Chen and He, 2021) and can be formulated as
W ([u, v, |u − v|]). Given that this is a binary classification problem, I applied a sigmoid function
combined with Binary Cross Entropy (BCE) as the loss function. For the sentiment similarity task,
I employed Figure 2 for the head architecture, which processes the embeddings of two sentences
through two fully connected layers before calculating the cosine similarity. I then applied a ReLU
function to convert all negative similarities to zero and multiplied by 5 to scale the output to 0-5. The
loss function used for this task is the Mean Square Error (MSE).

Figure 1: Head of paraphrase detection task. Figure 2: Head of sentiment similarity task.

Pooling Strategies Pooling is a critical operation used in the context of processing sequences,
especially when adapting the model to tasks that require a fixed-size input vector, such as classification
or similarity tasks. The three most commonly used pooling strategies are:

• CLS Token Pooling, which uses CLS embedding to represent the whole sentence.
• Mean Pooling, which takes the average of all token embeddings.
• Max Pooling, which takes the maximum value across all token embeddings for each dimen-

sion of the embedding space.

Parameters Adaption Methods
The concept behind parameter adaptation methods involves freezing the majority of the backbone
model, i.e., BERT’s parameters, during the fine-tuning process and only tuning task-specific parame-
ters. In addition to the task-specific heads mentioned earlier, I have also implemented four methods
based on projected attention, developed by Stickland and Murray (2019) and Houlsby et al. (2019).
These were developed to ensure that each task has its own projected attention modules, facilitating
the learning of task-specific attention. This approach maintains most parameters as shared, thereby
ensuring the model retains a robust common representation and strong generalization capabilities.

Firstly, the BERT layer can be expressed as:

BL(h) = LN(LN(h+MH(h)) + FFN(LN(h+MH(h))))

In the notation, BL stands for a BERT layer, LN represents layer normalization, FFN denotes the
standard feed-forward network with dff hidden states, and MH refers to the multi-head attention
layer, where h is the hidden vector with dimension d. Consequently, a BERT layer comprises
4d2 + 2ddff parameters. Setting d = dm and dff = 4dm, the BERT layer possesses 12d2m
parameters. The architecture of the first method, known as the Projected Attention Layer (PAL), is
depicted in Figure 3. The formulation is as follows:

BLPAL(h) = LN (LN (h+MH(h)) + FFN (LN (h+MH(h))) + TS(h))
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Figure 3: PAL Figure 4: Low Rank

Here, the hidden vector h from the previous layer is forwarded not only to the multi-head attention
layer (MH) but also to a task-specific layer, denoted as TS. The TS for PAL is given by:

TS(h) = V D
(
MH

(
V E(h)

))
where V E is an encoder of size dm × ds, with ds being significantly smaller than dm, thereby
primarily serving to reduce dimensionality. Conversely, V D acts as the inverse process to V E , with
dimensions ds × dm, and serves as a decoder for expanding the reduced dimensions.

The second method, called the low-rank layer, possesses an architecture and formula nearly identical
to that of the PAL, as illustrated in Figure 4. The sole distinction lies in its task-specific layer, TS,
which is modified as follows:

TS(h) = V D
(
I
(
V E(h)

))
Here, the multi-head attention layer is replaced with an identity matrix, transforming this layer into a
straightforward low-rank projection.

The third method, known as the Houlsby adapter, is developed by Houlsby et al. (2019) and features
a similar task-specific (TS) layer (Figure 5). There are two main differences: firstly, the TS function
incorporates a nonlinear layer, specifically a GELU function, between the encoder and the decoder;
secondly, it is integrated directly within the transformer layer, rather than being added in parallel.
The TS function of the Houlsby adapter is formulated as:

TS(h) = V D
(
GELU

(
V E(h)

))
The final method involves simply adding a task-specific BERT layer atop the shared BERT model. Its
architecture is illustrated in Figure 6.

Figure 5: Houlsby Adapter Figure 6: Projected Attention on Top

The total parameters required for these methods are detailed in Table 1, where T represents the
number of tasks, which totals three in this project. It is important to note that the PAL method shares
V E and V D across different layers, but not across tasks. In this study, I compare these four methods
along with various combinations of them. The results will be discussed subsequently.

Loss-balance Techniques The loss-balance technique in training BERT is crucial for multitask
learning, ensuring that each task’s loss is appropriately weighted to prevent dominance by any single
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METHOD PARAMETERS

PAL T (2dmds + 12× 3d2s)
LOW RANK T (12× 2dmds)
HOULSBY ADAPTER T (12× 4dmds)
PROJ.ATTEN.ON TOP T (12d2m)

Table 1: Total parameters for various parameter adaption methods

task, thereby improving overall model performance and fairness across tasks. So far, I have tried two
approaches. The first one is L = L12 + L22 + L32 with the simple idea that if any of the loss is
too large, then it will use itself to penalize itself. Another approach is the dynamic weight average
approach developed by Liu et al. (2019), which can be formulated as:

λk(t) :=
K exp(wk(t− 1)/T )∑

i exp(wi(t− 1)/T )
, wk(t− 1) =

Lk(t− 1)

Lk(t− 2)

where λk(t) is the weight for each task, and wk(t− 1) is the ratio of the loss in the previous round to
the round before that, representing the learning rate of different tasks. T is the temperature, smoothing
the weights of different tasks. If T is large then, then all the tasks have the same weight as 1.

Multi-task Training Curriculum (original) Due to the imbalanced sizes of the datasets for the three
tasks, with the Quora dataset being significantly larger than the other two, training them sequentially
could lead to the model forgetting earlier tasks. Conversely, training them in a multi-task manner—by
calculating and combining each task’s loss for backpropagation—typically requires the datasets to be
of similar size; consequently, the performance on the second task could be compromised. Therefore,
we propose a hybrid approach that alternates between sequential and simultaneous training to mitigate
the drawbacks of each method. During the odd-numbered epochs, we perform sequential training,
freezing all parameters except those specific to the current task, ensuring that each task does not
influence the others and that the task with the larger dataset benefits. During the even-numbered
epochs, we engage in simultaneous training, i.e., multi-task learning, fine-tuning all parameters while
downsampling the second task to match the sizes of the other two datasets. We have found that this
training curriculum can effectively improve performance.

Baseline For the baseline, I used the model architecture described above and the CLS pooling strategy.
I simply add all loss together as the loss function, i.e., L = L1 + L2 + L3.

5 Experiments

Data Sentiment analysis: SST dataset; Paraphrase detection: Quora dataset; Semantic textual
similarity: SemEval

Evaluation method Sentiment classification:classification accuracy; Paragraph detection:binary
prediction accuracy; Semantic textual similarity: Pearson correlation.
Experimental details For the pre-trained BERT model, its dimension dm is set to 768, and it consists
of 12 layers. Regarding the parameter adaptation method, the dimension ds is set to 204. Additionally,
for training, all models utilize a learning rate of 1e − 5, a batch size of 32, and are trained for 20
epochs.

Results Firstly, I compare the mean pooling strategy with the baseline CLS pooling. The results are
shown in Table 2.

Overall SST Paraphrase STS

Baseline(CLS) 0.667 0.537 0.647 0.636
Mean pooling 0.713 0.505 0.731 0.805

Table 2: Experiment result on dev set comparing CLS pooling and mean pooling

It shows that the overall score, as well as the scores for paraphrase and STS, have improved signifi-
cantly, while the score for SST has dropped. I guess this is caused by the loss-imbalance problem,
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where the improvement in some tasks has hindered others. Therefore, I have tried two loss-balancing
strategies described in the approach section, illustrated in Table 3.

Overall SST Paraphrase STS

Entity loss 0.713 0.505 0.731 0.805
Square Loss 0.708 0.512 0.720 0.783
Dynamic weight average 0.707 0.523 0.712 0.797

Table 3: Experiment result on dev set comparing loss-balancing techniques.

The results show that although the score for the SST task has improved, suggesting that the techniques
help smooth out the conflict among tasks, the overall score has declined. This may be because loss
imbalance is not the primary issue here, given that the state-of-the-art performance for the SST dataset
hovers around 0.6, and reducing its score to 0.505 is not unacceptable. Instead, what likely impedes
the overall performance is the quality of the embeddings, which motivates my further comparison of
parameter adaptation methods.

The experimental results on the development set, which compare different parameter adaptation
methods, are presented in Table 4. The results indicate that with the sequential training method, the
first task performs poorly, while the second and third tasks show good performance. In contrast, with
multi-task training, although the first and third tasks perform well, the second task exhibits poor
performance. However, when employing my proposed hybrid training method, the performance of
all three tasks has improved.

SST Paraphase STS

Sequential Training 0.305 0.810 0.803
Multi-task Training 0.505 0.731 0.803
Hybrid Training 0.515 0.823 0.817

Table 4: Experiment results on dev set comparing training curriculums

The experimental results on the development set, comparing different parameter adaptation methods,
are shown in Table 5. They indicate that the combination of low-rank PAL and the top BERT
layer method achieves the highest scores in the paraphrase and STS tasks. Upon uploading to
Gradescope, its overall scores were recorded as 0.761 on the development set and 0.759 on the
test set. The similarity of these scores suggests that this method possesses strong generalization
capabilities. Among individual parameter adaptation methods, the top-performing method is the
top layer adaptation, followed by the Houlsby adapter, then the low-rank method, and finally the
PAL method. Overall, the method that performed best involves combining the low-rank and top

SST Paraphrase STS

PAL 0.489 0.812 0.780
Low Rank 0.501 0.820 0.807
Proj.Atten.on Top 0.511 0.839 0.814
Houlsby Adapter 0.501 0.824 0.815
Low Rank + Top 0.509 0.850 0.839

Table 5: Experiment results on dev set comparing parameter adaption methods

layer adaptation methods, without employing any loss-imbalance tricks. It utilizes a hybrid training
curriculum that alternates between sequential and simultaneous training strategies. The task-specific
scores on the test set were 0.506 for SST, 0.856 for paraphrase detection, and 0.830 for STS.
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6 Analysis

For the first two classification tasks, I further analyze their precision score, recall score and F1 score,
as shown in Table 6.

SST Paraphase

Accuracy Score 0.509 0.856
Precision Score 0.538 0.752
Recall Score 0.462 0.920
F1 Score 0.459 0.828

Table 6: Accuracy, precision, recall, and F1 scores

It demonstrates that for the SST task, all scores are uniformly distributed, although they all fall below
0.6. This may be attributed to the task’s increased difficulty, given its classification into five categories
and the limited amount of data available. Moreover, for the second task of paraphrase detection, it is
notably surprising to observe that the precision score is significantly lower than the recall score.

To delve deeper, I generated the confusion matrices for these two tasks as depicted in Figure 7 and
Figure 8. In these matrices, each element Mij epresents the number of samples with the true label i
that were predicted as label j. Figure 7 reveals that for the SST multi-classification task, the diagonal
line—which represents correct predictions—dominates. Following closely are the lines near and
parallel to the diagonal, whereas the corner elements are nearly zero. This pattern indicates that
the model rarely mispredicts label 4 as 0 or label 0 as 4, commonly mistaking neighboring labels
(e.g., predicting 3 as 4 or 2 as 1). Concerning the second task, it is evident that the number of
false positives significantly exceeds that of false negatives, suggesting the model is more prone to
incorrectly predicting 0 as 1 rather than 1 as 0. Given more time, I would pursue further research to
explore how to fine-tune the model to address this imbalance more effectively.

Figure 7: The confusion matrix for the SST task.
Figure 8: The confusion matrix for the
paraphrase task.

For the third task, which is a regression task. I calculate more metrics and recorded in Table 7.

MSE 0.859
RMSE 0.927
MSLE 0.973
Median Absolute Error 0.575
Mean Absolute Error 0.719
Explained Variance Score 0.691
R2 Score 0.605

Table 7: More metrics for STS task.

7 Conclusion

In summary, throughout this project, I have explored various modifications to enhance model
performance. Switching from CLS pooling to mean pooling proved to be quite effective. However,
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employing a loss-balance technique did not significantly enhance overall performance. I also proposed
a hybrid multi-task training curriculum, which surpassed both the sequential training approach and the
naive multi-task training method in effectiveness. Furthermore, upon implementing and comparing
four parameter adaptation methods, I discovered that combining the low-rank and top attention
method yielded the best results. Incorporating these findings, my multi-BERT model achieved scores
of 0.761 on the development set and 0.759 on the test set, demonstrating that it does not suffer
from overfitting. Additionally, by analyzing the precision and recall scores, I identified a significant
imbalance between the number of false positives and false negatives in the paraphrase detection task,
which will direct my future work. In conclusion, this project allowed me to explore various techniques
for fine-tuning the multi-task BERT model and provided me with valuable practical experience.
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