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Abstract

Within NLP, the need for versatile models able to do multiple and diverse tasks
simultaneously is increasing at a rapid pace. When one model is able to be adapted
to multiple NLP tasks, both memory and time are saved, while simplicity of use for
users goes up. For the project, the main goal is to implement a minBERT model
which was motivated by the original BERT model. The goal is for the model to be
adapted to multiple and diverse NLP tasks. Specifically, the main tasks which the
model is required to be proficient in are sentiment analysis, paraphrase detection,
and sentence similarity. The main datasets used to train and test the model were the
Stanford Treebank Dataset, the Quora Dataset and the SemEval dataset provided
to us by Stanford University. For each task, I took a slightly different approach.
For paraphrase detection, I found that using two Linear Layers followed by an
activation layer was more effecient than using cosine similarity, while for sentence
similarity, I experimented with both Euclidean Distance and Cosine Similarity.
And here I found that Cosine Similarity yields far better results. In order to improve
the embeddings for sentence similarity, I also implemented a contrastive learning
approach, which also yielded better results.

1 Key Information to include
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2 Introduction

Within the field on NLP, there have been many remarkable breakthroughs within the last decade, and
the field is still expanding at a rapid pace especially with the developent of Al tools such as ChatGPT
and so on. One such breakthrough was the BERT model, which stands for Bidirectional Encoder
Representations from Transformers. One of the main breakthroughs related to the BERT model was
the fact that it was Bidirectional, meaning it processed data in a non-unidirectional way as opposed to
previous language models which mostly processed data in a linear fashion.

When it comes to the project, although I will not be implementing a full BERT model, I will be
developing what’s referred to as a minBERT model, which, as can be deduced from the name, is
simply a miniature version of the BERT model. However, the main goal of the project will be to
adapt the BERT model for additional downstream tasks. As mentioned in the abstract, these tasks are
Sentiment Analysis, Paraphrase Detection and Sentence Similarity. I will be using and manipulating
the embeddings from the BERT model to optimize each of these tasks.

The main datasets used to train the BERT model were the SSt dataset for sentiment analysis, the Quora
dataset for paraphrase detection, and the SemEval dataset for sentence similarity. I experimented
with multiple approaches for the project such as varying the number of linear layers used, using
contrastive learning, and cosine similarity. This will be detailed in the approach section below.
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3 Related Work

Since the BERT model was a big breakthrough within there is a lot of research surrounding it and
its extensions. And I used a lot that research for developing this project. The first research paper I
used was "BERT: Pretraining of Bidirection Encoders for Language Understanding” [Devlin et al.
(2018).1t helped me understand the architecture of the BERT model itself, along with the project
handout. Most of the implementation of BERT, and even the minBERT project I developed can be
traced back to this paper and it’s techniques.

Another research paper which was employed in the development of the project is a contrastive
learning research paper reference here|Gao et al.|(2021)). Since I had to apply contrastive learning
within my project, I would say that this research paper was the one which was of most use to the
project when it came to extension part for the three downstream tasks. The research describes the
SimCSE approach or Simple COntrastive Learning for Sentence Embeddings. When implementing
contrastive learning, a contrastive loss function is used, and the research from this paper was needed
when implementing the contrastive loss function for the project.

In addition, I also used the following research paper to look into the implementation of Siamese
Networks followed by cosine similarity for my own similarity prediciton function in the project.
Reimers and Gurevych! (2019))

Finally, I would say in order to guage the importance of the number of layers I was looking into this
piece of research by Anthony Sarah and Sharth Nittur Shridar: Sridhar and Sarah|(2021). Their work
deals with the importance of the intermediate layers for the BERT model implementation. Although
not as related to my question, some of the implementation of the project architecture was taken as
inspiration from it.

4 Approach

The main goal of the project is to refine the minBERT model for multiple downstream tasks. When
it comes to the implementation of the minBERT model itself I didn’t change or implement new
techniques.

However, the BERT model does serve as the base upon which I built multiple classification heads,
one for each of the three downstream tasks. The BERT model itself is responsible for generating the
embeddings for the sentences provided. These embeddings will then be further refined by me, and
then used for the downstream tasks. Before speaking about the details of how the embeddings were
refined and the classification heads for each task, it’s important to elaborate on the structure of the
BERT model itself.

The BERT model implemented starts by tokenizing the input sentences. These tokens are then
passed through an embedding layer. Then at the center of the model are 12 transformer layers.
The transformer layers make use of multi-head self-attention which allows the layers to focus on
different aspects of the sentences. Then a feed-forward network is then used on top of the output
from multi-head self attention to further refine the results. The model then produces embeddings for
each token within the sentence.For each sentence, I decided to use the embedding of the CLS token
at the start of each sentence.

Now when it comes to each of the downstream tasks, the output embeddings from BERT were
manipulated in different ways. For sentiment analysis, I passed the embeddings through a dropout
layer, followed by a linear layer which reduced the size of the embeddings to 70. Then the embeddings
are passed through another linear layer which reduced the embedding vector to the final output vector
of size 5. Each entry in the vector represents a sentiment class which is the final output returned. I
used cross entropy loss as the loss function for sentiment analysis. The softmax activation function is
built into cross entropy loss, so there was no need to apply it at the end of the linear layer.

However, when it comes to paraphrase detection, again I used a linear layer, but unlike semantic
analysis, I used two linear layers instead of one because they yielded better results. The embeddings
passed through a dropout layer, a linear layer, a relu activation function, and then again another
dropout layer, and a final linear layer. This yielded the best results. For the loss function, since
paraphrase deteciton is a binary operation, I used binary cross entropy loss instead.



For sentence similarity, I settled on using a symmetrical network of two linear layers operating side
by side. Both outputs from each linear layer were then passed through the cosine similarity function.
To be more specific, each embedding of each sentence was individually passed through a dropout
layer followed by a linear layer. This reduced the size of each embedding to a vector of size 5. Then
the two vectors were compared with cosine similarity. After that a sigmoid function was applied to
cosine similarity, and the result of the sigmoid function was multiplied by 5 to get the returned logit
into the correct range for sentence similarity (1 - 5).

As for the embeddings from BERT themselves, I refined them using a contrastive learning approach.
I would take the embeddings for sentence pairs from BERT and calculate a contrastive loss function
which I would add to the total training loss. This way the model would bring similar embeddings
closer together in the embedding space to aid with sentence similarity.

5 Experiments

This section contains the following.

5.1 Data

The datasets I'm using are the Stanford Treebank Dataset for the sentiment analysis task, the Quora
dataset for paraphrase detection, and the SemEval dataset for Semantic Textual Similarity. The
Stanford Treebank dataset consists of single sentences, while the latter two datasets are composed
of pairs. That is because the nature of paraphrase detection and sentence similarity entail that two
sentence are compared together and so their datasets are composed of pairs. No futher refining was
done on the datasets.

5.2 [Evaluation method

One of the main evaluation methods is the training loss. But the training loss itself is composed of
multiple components. One component is the cross entropy loss from sentiment analysis. Another
component is the binary cross entropy loss for paraphrase detection. And the third component
is the MSE loss for semantic textual similarity. The last component for the training loss is the
contrastive loss for contrastive learning which is used to refine the embeddings. The contrastive loss
was calculated and added between each pair of sentences in the SemEval dataset along with the MSE
loss.

The other metrics are used are accuracy scores for each of the sentiment analysis and paraphrase
detection. For semantic textual similarity, a pearson correlation coeffecient was calculated. An
average accuracy score is calculated between all three tasks by averaging the latter three values out.
This mean accuracy value, along with the training loss, is the most important value which was used
to detect the most efficient model and save it.

5.3 Experimental details

The main things which were between the program trials were the number of layers for sentiment
analysis and paraphrase detection. In addition, I experimented between using euclidean distance
and cosine similarity for semantic textual similarity. Last but not least, I experimented with using
contrastive learning.

Due to limitations in the number of gpu units I had available I couldn’t afford to test how varying
hyperparameters such as the learning rate, or the dropout probability or so on and so forth, would
affect the results. I had to conserve the gpu units for my main tests, which involved contrastive loss,
cosine similarity, and varying the number of layers. Therefore, the values of the hyperparameters I'm
about to outline were the consistent across all trials.

The BERT model ran for 10 epochs in the the training loops. The learning rate was approximately .
For all the dropout layers, the dropout probability was. And the hidden size of the embeddings was
768.

For the first trial of the experiments, I used a dropout layer followed by a linear layer for semantic
analysis. The softmax activation function was already built into the cross entropy loss function



used. For paraphrase detection, I concatenated the two embeddings, and then proceeded to pass
the concatenated matrix into a dropout layer, followed by a linear layer, followed by a ReLU
activation function. For sentence similarity, I simply calculated the cosine similarity between the two
embeddings. I used the binary cross entropy loss function for paraphrase detection, and the MSE loss
function for sentence similarity..

For the second trial, what changed was I used two linear layers instead of one for paraphrase detection.
The two embeddings of each sentence were concatenated. And then this concatenated embedding was
passed through a dropout layer and a linear layer that reduced the dimensionality of the embedding to
a vector of size 512. This vector was then passed through another dropout layer and another linear
layer that reduced it’s dimensionality to 1, ie a single logit, which was the final output inputted into
the loss function. The same process was applied for semantic textual analysis as well - used two
linear layers and two dropout layers instead of one dropout followed by a linear layer.

For the third trial, the only changes from the second trial was for sentence similarity. Before
implementing cosine similarity, I passed both CLS token embeddings for both sentences into a linear
layer. The linear layer reduced the embeddings to vectors of size 5. Then I compared the two vectors
with cosine similarity. Since the cosine similarity values are between -1 and 1, I applied the sigmoid
function and multiplied by 5 to get the logits into the appropriate range. I also removed the second
linear layer from the second trial for semantic textual analysis, and reverted back to using one Linear
Layer instead.

For the fourth trial, everything was implemented exactly the same as the third trial, however instead
of using cosine similarity followed by a sigmoid function for my activation layer, I used a euclidean
distance measure instead. To be specific, I actually used the value:

1
14+ EuclideanDistance(Linear Layerl(Embeddingl)+ Linear Layer2(Embedding?2))

The Linear Layers are really a dropout layer, followed by a linear layer.

For the fifth trial, I implemented contrastive learning. I implemented a contrastive loss function, and
added it’s loss to the total training loss across each training loop. The contrastive loss function was
implemented on every pair of embeddings in the semeval dataset in an unsupervised manner. For
each sentence in the pair, I applied a dropout layer to its embedding, then calulated its loss with
respect to the original embedding. The same process was repeated for the second sentence pair. And
those losses were added to the total training loss.

5.4 Results

Just so it’s clear, below are short descriptions of what each trial entailed in a table:

Trial 1 | Sentiment Analysis Paraphrase Detection Semantic Textual Similarity

1 One Dropout/Linear Layer One Dropout/Linear Layer | Cosine Similarity

2 Two Dropout/Linear Layers 2 | Two Dropout/Linear Layers | Cosine Similarity

3 One Dropout/Linear Layers 2 | Two Dropout/Linear Layers | Two Linear layers + Cosine Similarity

4 One Dropout/Linear Layers 2 | Two Dropout/Linear Layers | Two Linear layers + Euclidean Distance

5 One Dropout/Linear Layers 2 | Two Dropout/Linear Layers | Two Linear layers + Cosine Similarity + Contrast I

Here are the results across all trials. The first trial is the baseline. And the exact methodology for
each trial is described above. Across all tasks I used a multi-task classifier, as in one BERT model
was used for every task.

Trial SST Accuracy | Paraphrase Accuracy | STS Corr
Baseline 0.291 0.538 0.019
Trial 2 0.293 0.629 0.019
Trial 3 0.290 0.640 0.207
Trial 4 0.283 0.601 0.095
Trial 5 0.210 0.607 0.215




6 Analysis

6.1 Analysis of Varying Number of Dropout and Linear Layers with both Paraphrase
Detection and Semantic Textual Analysis

With both semantic textual analysis, and paraphrase detection, the only changes that were applied
from base line were doubling the number of linear layers in trial 2. When it comes to paraphrase
detection, the accuracy results shot up significantly due to this change. Although the training time
also went up which makes perfect sense since there were more parameters to figure out. However, for
semantic textual analysis doubling the number of linear layers did not lead to much improvement
in the accuracy scores. My current reasoning for this is that paraphrase detection is a binary task,
wherease with semantic textual analysis the model needs to understand the meaning of the words and
the sentences themselves. The latter is a much more complex task. Simply increasing the number
of layers might still not be enough to capture this complexity. I think I would have done better to
focus on refining the embeddings instead of the linear layers for semantic textual analysis as the
embeddings are where the semantic meanings of words in relation to each other are stored.

6.2 Analysis of Sentence Similarity Changes

Sentence Similarity is by far where most of the changes to the code were taking place, since the
results were worse from the start compared to the other two tasks. The sentence similarity results
should be addressed first in my opinion since they were by far the worst of the three. When simply
using cosine similarity directly on the embeddings without any use of linear layers beforehand, the
correlation coeffectient value for sentence similarity was incredibly low at only 0.019. I’'m still not
entirely sure why this was the case. Perhaps the embeddings needed for this task conflicted with
the embeddings needed for the semantic analysis task. And since only one BERT model across all
three tasks, this lead to poor performance. In addition, cosine similarity as a metric might not capture
the similarity of two sentences adequately, especially since only the CLS token was used for the
embeddings.

When the embeddings were passed through their own dropout layer, followed by a linear layer, and
then cosine similarity was applied to them, the sentence similarity results, although still objectively
low, improved significantly. I hypothesize this is due to the fact that cosine similarity targets the
embeddings only bringing embeddings with higher cosine values closer together. But the actual
predict similarity method itself does not do any learning of parameters. With the other methods,
the parameters for the linear layers need to be adjusted, but with predict similarity, there are no
parameters needing to be adjusted because cosine similarity operates the same way regardless of the
embeddings.

I attempted to use a Euclidean Distance measure for the fourth trial to penalize embeddings which are
far apart in distance. However, it didn’t work nearly as well as cosine similarity. I believe the reason
is because direction is a better encoder of sentence meaning than the size of the embedding vector
itself. With Euclidean Distance two embeddings might have the exact same direction, but simply
differing sizes, and this will increase the training loss.

The final change attempted on Sentence Similarity was contrastive learning. Although it did not
lead to significant improvement, there was still noticeable change in the sentence similarity scores,
which makes perfect sense since contrastive learning brings positive pairs closer together while
pushing negative pairs further apart, further aiding with sentence similarity. However, I did notice
that performance with semantic textual analysis dropped during this part, which reduced the overall
accuracy. I hypothesize the reason is due to contrastive learning promotes embeddings which help
with sentence similarity, but not so much with the sentiment or meaning of the sentences themselves.

7 Conclusion

The main finding of the project would be that simply increasing the number of linear layers does not
necessarily lead to better results, especially when the task is complex such as with sentiment analysis,
it might be more beneficial to focus on optimizing embeddings instead.

Specifically, if I had to redo the project with more gpu units, I would have definitely decided to put
more time into techniques that refine the embeddings such as pretraining and so on and so forth.



Simply by improving the embeddings a lot of the preprocessing for the model would have taken place
before the model even uses any of the classification heads for any of the three tasks.

In the future, I was hoping to look into the gradient surgery technique proposed in Yu et al.| (2020).
Multi-task learning was used across all of the tasks, where one model learns everything at the same
time. Although this is fine, I was curious as to how the model would have improved if it learned each
task independently. And even multi-task learning is used instead, how much would gradient surgery
have improved the results.
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