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Abstract

This project leverages the BERT model to enhance sentiment analysis, paraphrase
detection, and semantic textual similarity tasks. It begins with an implementation of
the BERT model’s multi-head self-attention mechanism and transformer layers with
an optimizer using the step function of the Adam Optimizer based on Decoupled
Weight Decay Regularization. Then, I implemented a multitask classifier using
task-specific layers, unique loss functions, and a novel caching mechanism during
pretraining to enhance efficiency. The results show that the MGD3-COSIM model,
trained on three datasets, outperforms the baseline across all tasks, achieving a
particularly high score in semantic similarity. However, when the Yelp dataset is
incorporated into training, a notable increase in paraphrase detection accuracy sug-
gests that richer linguistic variety improves performance, although at the expense of
other fine-grained semantic tasks. The paper also challenges the authoritativeness
of the standard development and test sets, questioning the reliability of "correct"
answers and highlighting the complexity of language understanding.
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2 Introduction

The desire to unravel the complexities of human language so computers can comprehend and process
its nuances continues to be an ongoing development in the field of natural language processing. The
field has harnessed the mathematical abstractions of language to parse the nuances and subtleties
embedded within human communication, such as Word2Vec and GLoVE (Mikolov et al., 2013;
Pennington et al., 2014). Tasks such as sentiment analysis, paraphrase detection, and semantic
textual similarity are not merely challenges of data processing; they represent intricate puzzles of
aligning the abstract, often ambiguous, constructs of language with the precise, definitive realm of
mathematical geometry. Through this confluence, the project at hand ventures into the terrain where
meaning becomes measurable, where the essence of words and sentences is transmuted into vectors
and matrices that offer a tangible grasp on the complex nature of language.

The transformer-based BERT model set new benchmarks across these NLP tasks (Vaswani et al., 2017;
Devlin et al., 2018). Its ability to capture deep bidirectional contexts within text made it particularly
effective. However, despite its impressive performance, the question of how to fully harness BERT’s
potential for diverse NLP tasks remains an area of active research. This implementation utilizes
task-specific layers, unique loss functions for each task with task-specific loss weighting, and build
various other performance-enhancing architectures on the baseline model.
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3 Related Work

The concept of fine-tuning of universal language models was spearheaded by Howard and Ruder
(2018). They utilized stacked LSTM layers and proposed differential learning rates and a novel
progressive unfreezing technique, which delivered state-of-the-art results by capturing the varying
levels of linguistic abstraction present in different layers.

Then came Devlin et al. (2018), with bidirectional transformer encoder layers pre-trained on the
Masked Language Model (MLM) and Next Sentence Prediction (NSP) tasks, which resulted in
embeddings with a deepened contextual understanding. Liu et al. (2019) built on this foundation,
finding that by focusing solely on the MLM task with modified training parameters, they could
surpass the benchmarks set by BERT without the NSP task.

The fine-tuning phase is critical when adapting BERT to specific tasks. Sun et al. (2019) examined
the effects of continued pretraining and the careful calibration of learning rates during task-specific
fine-tuning, mitigating the issue of catastrophic forgetting, first identified by McCloskey and Cohen
(1989). Their findings emphasize the delicate balance required in adapting general-purpose models to
retain learned knowledge while acquiring new information.

Subsequent authors have presented various optimizations to universal language models to enhance
performance on specific tasks such as unique loss functions, optimizers, and fine-tuning techniques.
For example, Jiang et al. (2020) introduced a novel regularization term that encourages model output
smoothness, reinforcing the stability of the learned representations even when input perturbations are
introduced. This advancement represents a shift towards a more principled optimization approach for
fine-tuning pretrained models, albeit with trade-offs in computational efficiency. Collectively, these
works set the stage for my research, providing a framework of strategies and insights that I aim to
build upon and extend in this project to improve both the performance and efficiency of the multitask
classifier.

4 Approach

I began by implementing the BERT model’s multi-head self-attention mechanism and transformer
layers (Devlin et al., 2018). For optimization, I implemented the step function of the Adam Optimizer
based on Decoupled Weight Decay Regularization (Kingma and Ba, 2015; Loshchilov and Hutter,
2017). This approach ensures that each step taken in the parameter space is scaled appropriately,
considering both the amplitude and direction of the gradients. It is defined as:

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t

θt+1 = θt −
α√
v̂t + ϵ

· m̂t where m̂t =
mt

1− βt
1

and v̂t =
vt

1− βt
2

In the MultitaskBERT class, the constructor initializes the BERT model and sets the gradient
update policy for its parameters based on the specified mode: ’pretrain’ or ’finetune’. Task-specific
classifiers are constructed with sequential modules. These classifiers are designed to the dimensional
requirements of the respective task function.

The predict_sentiment function uses an embedded representation of the input sentence to produce
a 5-dimensional logit vector. The sentiment classifier network includes a linear layer, taking BERT’s
hidden size as both input and output dimension (BERT_HIDDEN_SIZE), followed by batch nor-
malization, GELU activation, dropout, and a final linear layer that maps to the number of sentiment
classes (N_SENTIMENT_CLASSES).

The predict_paraphrase function combines features from pairs of sentences. It takes the
concatenated embeddings (BERT_HIDDEN_SIZE for each) resulting in an input dimension of
BERT_HIDDEN_SIZE * 2 for the first linear layer of the paraphrase classifier. Subsequent layers
follow a similar pattern of normalization, activation, and dropout before reducing to a single output
logit.
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The predict_similarity function computes the cosine similarity between two sentence embed-
dings. Given the scalar nature of this similarity score, the first linear layer of the similarity classifier
has an input size of 1, which is then expanded to BERT_HIDDEN_SIZE, processed through normal-
ization, activation, and dropout, and finally compressed back to a single value indicating the degree
of similarity.

The training procedure for the multitask model integrates the three DataLoader objects in a unified
training loop. The training loop computes losses individually for each task based on its specific
data and label format. For sentiment analysis, the loss is computed using cross-entropy, reflecting
the task’s classification nature. For paraphrase detection, it uses binary cross-entropy loss, suitable
for its binary classification goal. For semantic textual similarity, it uses mean squared error loss,
aligning with its regression-based objective. To address the imbalance in dataset sizes, I implemented
task weighting for the total loss. After a hyperparameter search, my task weights were set as
’sst’: 1, ’para’: 0.3, ’sts’: 1. These weights seek to reduce the influence of the large
Quora dataset on the model’s learning process. I initially implemented inverse proportionality but it
resulted in diminished performance, particularly for the paraphrase detection and semantic similarity
tasks, as shown in Table 3.

4.1 Novel Caching During Pretraining

Significant computational improvements are realized by caching the [CLS] token embeddings in
the forward function during pretraining. Since BERT weights remain static during pretraining, the
embeddings can be reused, thereby significantly reducing training time. The caching mechanism
reduces per-epoch pretraining time on an NVIDIA T4 from 32 seconds to 4 seconds for SST and
STS, and from 12 minutes to 1.5 minutes for Quora. That is an 87.5% reduction in training time.

A dictionary is maintained that maps sentence IDs to their respective embeddings. When the forward
function is called, it identifies all pre-computed embeddings from the dictionary and only computes
new embedding for unseen sentence IDs, which are then also stored in the cache for future use. Newly
computed embeddings undergo dropout as a form of regularization before being cached. Finally,
embeddings are collated into a single tensor for subsequent tasks.

4.2 Fine-tuning BERT Weights with Cosine Similarity Loss

During the fine-tuning phase, rather than relying on mean squared error (MSE) loss, which directly
compares predicted similarity scores with ground truth, the model employs cosine similarity loss.
Inspired by Reimers and Gurevych (2019), the loss function helps optimize the cosine of the angle
between two sentence embedding vectors, fostering embeddings that are directionally aligned for
semantically similar sentences and orthogonal for dissimilar ones. Figure 1 shows the architecture of
the loss.

The predict_similarity_finetune function is at the heart of this approach. It generates em-
beddings for sentence pairs and calculates their cosine similarity, reflecting the geometric notion of
semantic proximity. In the training loop, the labels are scaled to a [0, 1] range. This is an adaptation
of the original architecture to force the model to process dissimilar embeddings’ cosine similarity as
0, which represents orthogonality, and produces better performance than the [-1, 1] range.

4.3 Training on Additional Datasets

I edited the datasets.py file to load and pre-process additional data from the Yelp review dataset to
experiment with enhancing STS training. The pre-processing filters unnecessary data, adds a unique
identifier, and aligns the labelling structure. The data is then loaded into the model using the given
functions.
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Figure 1: From Reimers and Gurevych (2019): "SBERT architecture at inference to compute
similarity scores. This architecture is used with the regression objective function."

5 Experiments

5.1 Data

My model utilizes four datasets provided by the CS 224N staff across the three tasks: Stanford Senti-
ment Treebank (SST) and CFIMDB dataset for sentiment analysis, Quora for paraphrase detection,
and SemEval STS Benchmark dataset for semantic textual similarity.

The Stanford Sentiment Treebank (SST) categorizes single-sentence strings from movie reviews into
five sentiment classes: negative, somewhat negative, neutral, somewhat positive, or positive. For
paraphrase detection, I employ a subset of the Quora dataset that labels question pairs as paraphrases
or not. The SemEval STS Benchmark dataset for evaluating semantic textual similarity rates sentence
pairs on a scale from 0 (unrelated) to 5 (equivalent meaning). Table 1 details number of examples in
the train, dev, and test subsets.

Dataset Train Examples Dev Examples Test Examples
Stanford Sentiment Treebank (SST) 8,544 1,101 2,210
CFIMDB 1,701 245 488
Quora 141,506 20,215 40,431
SemEval STS Benchmark 6,041 864 1,726

Table 1: Summary of datasets used for sentiment analysis, paraphrase detection, and semantic textual
similarity tasks provided by the CS 224N course staff.

5.2 Evaluation method

The evaluation metrics for the tasks are: accuracy for sentiment analysis and paraphrase classification,
and Pearson correlation for semantic textual similarity. I benchmark my classifier.py against
baselines provided by the CS 224N staff. My multitask_classifier.py is compared to the
simplest implementation of the three task functions to make them work with the given code (my
first submission to the leaderboard). I am also comparing against my submission for the midpoint
check-in and the class leaderboard.

5.3 Experimental details

The BERT weights were frozen during pretraining and unfrozen during finetuning. After the first
pretraining epoch populated the cache, which took 32 seconds for SST and STS each and 12 minutes
for Quora, subsequent epochs took 4 seconds each for SST and STS and 1.5 minutes for Quora. The
finetuning took 2 minutes for SST and STS each and 40 minutes for Quora per epoch.

5.4 Hyperparameters

Table 2 lists the hyperparamaters used for pretraining, finetuning, and the AdamW optimizer.
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Hyperparameter Value
Epochs 10
Hidden Dropout Prob 0.3
Pretraining Learning Rate 1× 10−3

Finetuning Learning Rate 1× 10−5

Batch Size 8
AdamW Optimizer Learning Rate 1× 10−3

AdamW Betas [β1, β2] [0.9, 0.999]
AdamW Epsilon (ϵ) 1× 10−6

AdamW Weight Decay 0
Task Loss Weights ’sst’: 1, ’para’: 0.3, ’sts’: 1

Table 2: Hyperparameter selections for pretraining, finetuning, and the AdamW optimizer. Task Loss
Weights are the scalars applied to the loss functions for the three tasks.

5.5 Hyperparameter Search

I only considered the results on the dev set after pre-training when conducting the hyperparameter
optimization to limit repetitive finetuning, which is time and compute expensive. A more comprehen-
sive hyperparameter search–covering more hyperparameters and including post-finetuning results–is
possible if further compute and financial resources are available.

A selection of results from various experiments with hyperparameter adjustments are shown in
Table 3. If the hyperparameter is not marked as adjusted, then it is set as the default listed above.

SA PD STS Overall Score
Model Accuracy Accuracy Pearson Correlation
Batch size: 32 0.392 0.708 0.256 0.576
Batch size: 16,64,16 0.383 0.702 0.256 0.571
AdamW Weight Decay: 1× 10−4 0.432 0.648 -0.256 0.608
Epochs: 20 0.398 0.712 0.256 0.579
Pre-training LR: 1× 10−5 0.363 0.551 0.256 0.514
Task Loss Weights: [1, 0.5, 1] 0.477 0.688 0.256 0.598
Task Loss Weights: [0.4, 0.023, 0.57] 0.461 0.375 0.127 0.321
Hidden Dropout Prob: 0.1 0.407 0.685 -0.256 0.612

Table 3: Hyperparameter search on MGD3-COSIM (best model) on the dev sets.

6 Results

My final model, MGD3-COSIM, yielded performance over the baselines on the test set, as shown
in Table 4.

Sentiment Analysis Paraphrase Detection Semantic Similarity Overall Score
Model Accuracy Accuracy Pearson Correlation
MGD3-COSIM 0.466 0.796 0.680 0.701

Table 4: Performance comparison of multitask classifiers on the test sets.

Table 5 describes the five models I developed and trained. Table 6 shows the results for the various
models on the dev sets. The classifier.py results can be found in Table 7 in the Appendix.

I compared my various model results on the dev set results, as detailed in Table 5 and Table 6
show that the MGD3-COSIM model stands out with the highest overall score (0.725), a promising
indication that the model architecture, training procedure, data, and hyperparameter selection yield
robust performance.

The MGD4-Y model, which included Yelp reviews in its training data, showed an improvement in
Paraphrase Detection (0.802) compared to the MGD3-COSIM, suggesting that additional data can

5



Model Name Description
MGD3-
COSIM

Multilayer classifiers, GELU activation, Dropout, trained on Three
datasets (SST, Quota, and STS). Cosine similarity loss finetuning.

MGD4-Y Multilayer classifiers, GELU activation, Dropout, trained on Four
datasets (SST, Quota, STS, and Yelp reviews).

MGD3 Multilayer classifiers, GELU activation, Dropout, trained on Three
datasets (SST, Quota, and STS).

Midpoint Linear classifiers without activation functions. Dropout applied to em-
beddings. Trained on SST, Quota, and STS datasets.

Baseline Simple implementation with linear classifiers and absolute difference
calculations for similarity and paraphrase. Only trained on SST data.

Table 5: Descriptions of various models.

Sentiment Analysis Paraphrase Detection Semantic Similarity Overall Score
Model Accuracy Accuracy Pearson Correlation
MGD3-COSIM 0.504 0.790 0.761 0.725
MGD4-Y 0.457 0.802 0.595 0.685
MGD3 0.463 0.789 0.743 0.708
Midpoint 0.432 0.648 0.406 0.594
Baseline 0.477 0.389 0.114 0.474

Table 6: Performance comparison of multitask classifiers on the dev sets.

enhance performance for certain tasks. However, it underperformed in the Semantic Similarity task
(0.595) and had a lower overall score (0.685), indicating that while the richer linguistic variety aids
paraphrase recognition, stylistic differences and potential noise from the Yelp dataset may disrupt the
model’s performance on tasks requiring finer semantic discernment.

Both the Midpoint and Baseline models trailed behind the more advanced models, which was expected
given their simpler architectures and training datasets. The Baseline model’s particularly low score in
Semantic Similarity (0.114) and Paraphrase Detection (0.389) accentuates the importance of a more
sophisticated model design and training regimen for complex NLP tasks.

These outcomes suggest that while incorporating additional datasets can be beneficial, careful
consideration must be given to task compatibility and the risk of domain overfitting. The results also
underscore the significance of tailored architectures and highlight the potential for further refinements
in model training strategies to achieve consistent performance improvements.

7 Analysis

After an initial improvement, Figure 2 and Figure 3 show the dev set score exhibits slight fluctuations,
peaking at Epoch 6 during pre-training and Epoch 4 during fine-tuning, then slightly declining or
stabilizing thereafter. The observed patterns suggest that while the model is becoming more confident
in its predictions over time (as evidenced by the decreasing loss), this does not necessarily translate
to consistent improvements in accuracy on the development set. This is likely due to overfitting,
where the model learns the training data too well and fails to generalize to new data. It’s also possible
that the model has reached its performance capacity given the current architecture and training data,
suggesting that further improvements may require architectural changes, additional data, or more
nuanced training techniques. The MGD3-COSIM model demonstrates a solid capacity for learning,
but its fluctuations in development accuracy reveal the inherent challenges in achieving consistent
performance gains across training epochs.

7.1 Questionable Authoritativeness of Dev and Test Set Labels

The authoritativeness of the labels given to sentences on the dev and test sets are questionable. For
example, my model classifies the sentence "It’s a lovely film with lovely performances by Buy and
Accorsi" as a 4 (indicating somewhat positive). However, the official score given to this sentence is a
3 (neutral). Another example is the sentence "You won’t like Roger, but you will quickly recognize
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Figure 2: MGD3-COSIM Pre-Training Loss
and Dev Accuracy
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Figure 3: MGD3-COSIM Fine-Tuning Loss
and Dev Score

him." My model predicts this sentence is a 2 (somewhat negative), but the official score is a 1
(negative). A third example is the sentence "As unseemly as its title suggests." My model predicts
this sentence is a 1 (negative), but the official score is a 3 (neutral). These are just a selection of the
many examples in the benchmark that have questionable "correct" answers.

8 Conclusion

The project explored the efficacy of BERT-based models across a spectrum of NLP tasks including
sentiment analysis, paraphrase detection, and semantic textual similarity. My key contribution, the
MGD3-COSIM model, demonstrated a commendable performance with the highest overall score of
0.725 on the dev set and 0.701 on the test set, which suggests that my approach to fine-tuning BERT
with task-specific layers and loss functions is effective. Furthermore, the inclusion of additional data
from Yelp reviews in the MGD4-Y model led to improved paraphrase detection, underscoring the
potential benefits of training on diverse datasets.

A significant finding was the diminishing returns in sentiment and semantic similarity tasks with
the addition of the Yelp dataset, which may point to the challenge of balancing domain-specific
knowledge with generalizability. My implementation of a novel caching system during pretraining
also achieved a substantial reduction in training time by 87.5%, showcasing a practical advancement
in computational efficiency.

The limitations of our work became apparent through the fluctuations in development accuracy,
hinting at potential overfitting and the constraints of model capacity. Furthermore, I question of the
authoritativeness of the dev and test sets as evidenced by the imperfect labelling examples.

Future work could explore the effects of additional linguistic features or alternative datasets to
mitigate domain discrepancy. Investigating more sophisticated regularization techniques might also
address overfitting. Lastly, re-evaluating the scoring of benchmark datasets or developing new, more
nuanced evaluation metrics could contribute to more reliable measures of model performance.
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A Appendix

Task Dev Accuracy Delta to Baseline
Pretraining for SST 0.462 +0.072
Pretraining for CFIMDB 0.878 +0.098
Finetuning for SST 0.524 +0.009
Finetuning for CFIMDB 0.959 -0.007*

Table 7: Performance of the single task classifier compared to the baseline provided by the CS 224N
course staff.
* within 1 standard deviation of baseline
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