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Abstract

We aim to extend the capabilities of pre-trained BERT(Devlin et al., 2019) model
for Sentiment Analysis, Paraphrase Detection, and Semantic Text Similarity by
fine-tuning it with task-specific heads, incorporating strategies such as SMART
regularization, Multi-task learning, MultipleNegativesRankingLoss, Triple-Bert
single task finetuning, architecture modification, and hyperparameter tuning, to
enhance task-specific performance while maintaining its broad applicability and
generalization. Our Ensemble model, which attained a notable and so far the
highest overall test score of 0.797 (SST accuracy of 0.557, PARA accuracy of
0.896 and STS correlation of 0.876), has achieved the top 2 performance on the
test leaderboard by March 16th.

1 Key Information To Include

Team contributions: We contribute equally to the project and do all the implementation, experimen-
tation, analysis and writing together.

Project Mentor: Olivia Lee

2 Introduction

We start our BERT’s Odyssey here. Advancements in pre-training language models have significantly
improved unsupervised and fine-tuning methods. While models like ELMo faced limitations with its
feature extraction, it also demonstrated the promising aspects of transfer learning from large datasets.
BERT, building on top of these developments, is therefore our project’s foundation, employing a
novel approach to pre-training and fine-tuning to enhance task performance across different domains.

Despite these advancements with pre-training on high-resource domains, given the scarcity of target
task data, overfitting phenomenon emerged as a serious question to consider. Various regulariza-
tion techniques, including SMART, were designed to overcome such limitation, aiming to enhance
the model’s robustness and generalizability. Acknowledging the novel approaches along with the
limitation, our implementation efforts focused on constructing a minimal BERT encoder, experi-
menting with various hyperparameters, investigating the impact of different architectures including
input strategies and head layers, and utilizing extensions such as SMART for regularization, Multi-
pleNegativesRankingLoss as contrastive learning to improve embedding, and Multi-task learning for
richer representation. The combination between various multi-task learning strategies and SMART
regularization is our original contribution.

Through extensive experimentation, we aim to refine our understanding of how to best utilize BERT’s
capabilities, balancing between task-specific optimization and the broader goal of generalizable,
robust language understanding. This paper presents our findings, detailing the challenges encountered,
solutions proposed, and the implications of our work for future NLP research.
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3 Related Work

The research in pre-training general language representations has made great improvements in
unsupervised feature-based approaches and fine-tuning approaches. While models like ELMo
generalizes word embedding, extracting context-sensitive features from two opposite directional
language models, their bidirectionality were limited. Also, transfer learning from supervised data
indicates that pre-trained models on large datasets can effectively aid across different tasks. Therefore,
as the foundation for our project, BERT (Bidirectional Encoder Representations from Transformers),
was introduced as a combination of these developments, utilizing a novel pre-training and fine-
tuning approach. As it conditions on both left and right context, BERT improves its behavior for
natural language processing tasks much better than unidirectional pre-training models that used to
be prevalent, by using a masked language model(MLM). Alongside MLM, BERT also utilizes next
sentence prediction to further improve its understanding of sentence-level context and relationships.
Since BERT has already learned rich and context-aware representations of language, it can be fine-
tuned with just one, or minimal additional output layers, without performing extensive task-specific
adjustments, to achieve state-of-the-art results across various of NLP tasks, including question
answering and language inference. Therefore, BERT simplifies the requirement for architectural
complexity that is demanded to achieve high performance for downstream tasks.

Despite the development of two-stage models of pre-training high-resource domains and fine-tuning
on target tasks with limited data, including BERT, fine-tuning stage can be challenging because of
the risk of overfitting due to high complexity of pre-trained models and limited data from target
domain. SMART (Jiang et al., 2020) solves the overfitting problem and accounts for the tuning
efforts and robustness for improving model’s performance for the second fine-tuning stage. It
proposes Smoothness-inducing Adversarial Regularization. Inspired by local shift sensitivity on
robust statistics, this regularization adds a perturbation to the input, which effectively control the
change of the output, enforcing the smoothing of the model. As a result, it successfully manages the
complexity of the model for avoiding overfitting. However, SMART acknowledges the limitations of
computational resources and time–more training time and more memory usage, affecting the scope
of experiments with BERT.

Moreover, instead of fine-tuning BERT on individual tasks, adding up each task’s losses as one total
loss is another approach to update BERT, as proposed in multi-task learning (Bi et al., 2022). Since
the learning objectives for some tasks have synergies, by employing multi-task learning with such
auxiliary tasks, multi-task learning takes advantage of the richer representation of the auxiliary tasks.
Moreover, with one total loss for all tasks to update the parameters of the model simultaneously,
the model would find representations that can generalize well across tasks, achieving a more robust
performance on future data.

4 Approach

4.1 Implementation of Bert model and downstream tasks

For the first part of our project, we implemented a minimal BERT encoder by integrating a multi-
headed self-attention mechanism, layer normalization, and position-wise feed-forward networks, and
utilized pre-trained weights loaded from the Hugging Face’s web, passing the sanity check. We also
completed the implementation of AdamW optimizer and passed the test. After applying the pooled
layer and then projecting it using a linear layer with CrossEntropy loss for Sentiment Analysis task,
our work passed the pre-described reference accuracies, aligning with the project’s requirements.

For the second part, we designed 3 different heads for the three tasks, Sentiment Analysis (SST),
paraphrase detection (PARA), and semantic textual similarity (STS), which took the embedding as
input and outputted the logits for binary classification (PARA) and regression (STS), with Bina-
ryCrossEntropy loss and MSE loss respectively.

4.2 Multi-Bert

Our baseline model is extended from the baseline SST task by adding baseline PARA and STS tasks,
where we update the parameters of one BERT model with multi-task learning. We call our baseline
model Multi-Bert, which enhances the model’s generalization and robustness(Bi et al., 2022).
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Given the comparison nature of paraphrase detection, in the hope of taking advantage of contrastive
learning between positive and negative samples and improving the robustness and generalization of
the model for paraphrase detection, we considered another extension, Multiple Negatives Ranking
Loss Learning (MNRLoss)(Henderson et al., 2017). It minimizes the distance between similar pairs
while maximizing the distance for dissimilar pairs, as shown in equation (1). We implemented the
loss from scratch and applied it on Multi-Bert: positive pairs in one batch (batchsize=64) are used to
calculate MNRLoss, where K is the number of positive pairs. K negative samples are generated by
rolling i position in a batch each time, for i = 1, ...,K. S was obtained by the output logits of the
model, with tanh function to project the value into [-1, 1] as similarity and a scale of 20.

J (x, y, θ) = − 1

K

K∑
i=1

logPapprox(yi|xi) = − 1

K

K∑
i=1

S(xi, yi)− log
K∑
j=1

eS(xi,yj)

 (1)

4.3 Triple-Bert

Because of the lack of robustness of our naive baseline model, and because we were concerned about
the negative interaction and influence between different tasks, we considered fine-tuning these three
tasks independently, which is called Triple-Bert. Accordingly, Triple-Bert is designed as a composite
model integrating three separate BERT models, each individually fine-tuned for optimal performance
on distinct NLP tasks, and we aim to achieve specialized optimization for SST, PARA, and STS.
Compared to baseline model, Triple-Bert mitigates negative influences between three tasks during
fine-tuning, but may decrease its generalization ability.

To improve the Triple-Bert’s performance on Sentence Pair comparison tasks, we then tried different
input strategies as our extension for PARA and STS (Sentence Pair data): combining two sentences
with Bert’s [SEP] token as inputs for one Bert, or inputting two sentences into two shared-weights
Berts(Reimers and Gurevych, 2019). We found the former strategy yielding much better performance,
possibly because of the cross-attention of pair sentences that extracts the relationship information
between sentences.

4.4 SmartTri-Bert

Due to the limited number of training data we can access, we would like to improve the generalization
ability of our model by using regularization method, SMART, to avoid overfitting. We then imple-
mented SmartTri-Bert, where we incorporated SMART into the Triple-Bert model for downstream
tasks with different smart weights. To be specific, for our Triple-Bert model f(·; θ) with n data points
{(xi, yi)}ni=1, where xi’s represents the input sentence embeddings from the Embedding layer of the
Bert model and yi’s are the corresponding labels, we focused on optimizing the fine-tuning process:

minθF (θ) = L(θ) + λsRs

where λs is the smart weight, and L(θ) is the loss function:

L(θ) =
1

n

n∑
i=1

l(f(xi; θ), yi)

and Rs is the smoothness-inducing adversarial regularizer:

Rs(θ) =
1

n

n∑
i=1

max
||x̃i−xi||pϵ

ls (f (x̃i; θ) , f(xi; θ))

For classification task SST and PARA, f(·; θ) outputs a probability distribution, and ls is chosen as
the the symmetrized KL-divergence:

ls(P,Q) = DKL(P ||Q) +DKL(Q||P )

For regression task STS, f(·; θ) outputs a scalar, so ls is the squared loss:
ls(p, q) = (p− q)2

The adversarial regularizer promoting smoothness essentially evaluates the local Lipschitz continuity
of the function f with respect to the given metric ls. This feature of inducing smoothness is crucial
for mitigating overfitting and bolstering the model’s ability to generalize, especially in scenarios with
limited resources for these three tasks. Besides implementing SMART regularizationfrom scratch,
we tried different smart weights for each task in SmartTri-Bert model, imposing different levels of
regularization to these three tasks.
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4.5 SmartMul-Bert

After building a more robust and generalizable model with improved input strategy and SMART
regularization, we would like to examine again the transfer learning ability between different tasks,
exploring whether training model on one task can be helpful for other tasks, and we call the corre-
sponding model SmartMul-Bert.

Firstly, given the synergies of sentence pair comparison objectives of PARA and STS, and the huge
dataset of PARA compared to that of STS, we hope that what the model has learned from PARA data
would help improve STS’s prediction performance by training one Bert for these two tasks in each
epoch sequentially. As a result, we saw an upward trend of the model’s performance on STS task.

Another way for transfer learning we considered is Multi-task learning for PARA and STS, which
also utilizes synergies between the learning objectives for the two tasks. In each batch, we added
together the losses on the tasks of PARA and STS, loss = lossPARA+ lossSTS , built a single added
optimization objective, and then updated the parameters of the single Bert for the two tasks. Within
each batch, the way we combined STS data and PARA data is at a ratio of 1:25, ensuring that both
datasets can be entirely iterated and run through under the same number of batches.

4.6 Architecture and Hyperparameter Tuning

We also performed architecture and hyperparameter tuning to further analyze and improve the
performance of models and to do ablation studies on them. We did ablation studies on Bert hidden
layer dropout probabilities, head layer dropout probabilities, number of head layers, and weight
decay of AdamW optimizer.

5 Experiments

5.1 Data

For Sentiment Analysis, we used Sentiment Treebank (SST) dataset, annotated by three human judges.
We used 8,544 examples for training, 1,101 examples for dev, and 2,210 examples for testing. We
also used CFIMDB dataset consisting of 2,434 highly polar movie reviews. For Paraphrase Detection,
we used Quora dataset consisting of 400,000 question pairs with labels. We used 141,506 examples
for training, 20215 examples for dev, and 40431 examples for testing. For STS, we used SemEval
STS Benchmark dataset with 8,628 different sentence pairs of varying similarity. We used 6041
examples for training, 864 examples for dev, and 1726 examples for testing.

5.2 Evaluation method

We used accuracy (or best accuracy) as the metric for SST and PARA tasks, and we utilized Pearson
correlation of the true similarity values against the predicted similarity values for the STS task.

5.3 Experimental details

For the Sentiment Analysis classifier in Part 1, we used le-3 learning rate, batch size = 8, Bert
hidden layer dropout probability = 0.1 for pretraining and 1e-5 for finetuning on Stanford Sentiment
Treeband and CFIMDB datasets. Notice that in "pretrain" mode, the pretrained parameters of the
BERT model are frozen, and the only changes/updates of parameters occur in the model’s heads for
each specific task, which is called "linear probing", examining the generalization ability of pretrained
Bert model.

For our baseline Multi-Bert model, we used same learning rates=1e-5, hidden dropout probability =
0.1, and batch size = 64 for finetuning, each with a single linear head layer. We also tried more head
layers for PARA (two linear layers and a ReLU activation, hidden size=768), and the motivation is
the extreme large number of examples in Quora dataset, compared to the others.

For Multi-Bert model with MNRLoss for PARA task, the scale is 20, and K depending on the number
of positive samples in a batch, and output logits as the S score. All other hyperparameters remain the
same as in Multi-Bert model.
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Triple-Bert model is an ensemble of three independent Bert models, each with task-specific head. All
other hyperparameters remain the same as in baseline model. For Triple-Bert model with improved
2-input-structure, we used two combined sentences pair with Bert’s [SEP] token as Bert input for
PARA and STS. All other hyperparameters remain the same as in baseline model.

For our SmartTri-Bert model, an ensemble of three independent Bert models with SMART reg-
ularization, we used smart weight λs = 0.5, 1, 2, 4, 5, 6, 7, 8 for an ablation study and fixed the
weight decay equalling to 1e-4 for SST, 0 for PARA, and 1e-3 for STS. We utilized best hidden
dropout probability equaling to 0.2 for this model. Because of the better performance of improved
2-input-structure, we applied it into our SmartTri-Bert model and all the models below. All other
hyperparameters remain the same as Triple-Bert model.

For our SmartMul-Bert model, for all attempts, we fixed the smart weight to 2 for SST, 6 for PARA
and 8 for STS, which are the best parameters after the ablation study. All other hyperparameters
remain the same as in SmartTri-Bert.

For Architecture and Hyperparameter Tuning, we conducted the hidden layer dropout prob-
ability ablation study on STS task with Triple-Bert, ranging from 0 to 0.5; head layer dropout
probability on SST and STS with SmartTri-Bert from 0 to 0.9; head layers on all three tasks with
SmartTri-Bert; and weight decay on STS from 0 to 1e-2.

5.4 Results

For part 1, we reached 0.423 and 0.816 as the pretrain dev set accuracy and 0.525 and 0.963 as the
finetune dev set accuracy for both datasets.

For part 2, the finetuning accuracy on dev sets are listed in Table 1. Multi-Bert baseline model did
not perform well on the three tasks, and one possible reason is that the tasks cannot be transferable
learned with one backbone properly. When we add more head layers of PARA, we saw an increase
of the PARA accuracy from 0.654 to 0.802 because of the improvement of the ability to analyze and
compare the difference in embedding of sentences pair.

For Multi-Bert with MNRLoss, the model suffered from a performance degradation, which may be
due to our naive design of MNRLoss and improper hyperparameter choices (e.g. scale and tanh), and
we also found that maybe it is because MNRLoss is sensitive to the size and diversity of dataset.

For Triple-Bert, we can see an improvement compared to the baseline model, possibly because of
the independence between three tasks, but accordingly, it requires more storage. For Triple-Bert+2-
input-structure, it achieved overal dev score = 0.773 and has a large improvement on PARA and
STS. It demonstrates the positive effect of cross-attention between sentences.

Table 1: Performance comparison of different models

Model SST dev PARA dev STS dev Overall dev
accuracy accuracy correlation score

Multi-Bert (Baseline) 0.478 0.654 0.371 0.606
Multi-Bert+more head layers in PARA 0.499 0.802 0.364 0.661

Multi-Bert+MNRLoss 0.294 0.426 0.038 0.413
Triple-Bert original 0.511 0.790 0.362 0.660

Triple-Bert+2-input-structure 0.511 0.883 0.850 0.773
SmartTri-Bert (λs = 2, 6, 8) 0.550 0.897 0.870 0.794

SmartMul-Bert (PARA+STS) / 0.885 0.875 /
SmartMul-Bert (PARA+STS, one-loss) / 0.866 0.874 /

SmartMul-Bert (SST+PARA+STS) 0.526 0.888 0.877 0.784
Ensemble 0.550 0.897 0.877 0.795

For SmartTri-Bert, we added SMART regularization to all three tasks of Triple-Bert, and firstly did
an ablation study on the smart weight. As shown in Table 2, we can find that λs = 2 and λs = 1
achieve the best dev accuracy 0.550, which is also much better than that from Triple-Bert+2-input-
structure model, so we can say that SMART plays an important role in avoiding overfitting and
improving generalization and robustness. As shown in Figure 1, we can see a downward trend of
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training accuracy when smart weight increases, which is because the level of regularization increases.
For PARA and STS tasks, we found that λs = 6 and λs = 8 achieved the best results respectively,
outperforming the Triple-Bert+2-input-structure model, demonstrating the broad applicability of the
SMART method.
Table 2: Performance metrics for
different smart weight λs on SST

λs Dev set accuracy
0.5 0.532
1 0.550
2 0.550
4 0.542
5 0.542
6 0.546
7 0.536
8 0.537

Figure 1: Dev set and Train set accuracy for different smart
weight λs on SST

For SmartMul-Bert for PARA and STS, with the implementation of SMART regularization to avoid
overfitting (as shown in the promising results with SmartTri-Bert), while PARA accuracy is only
0.885, STS correlation increases to 0.875, becoming higher than all results from previous models.
Such quantitative results align with our expectations that training on PARA data with a large scale
can indeed benefit the STS task. With synergies of the sentence pair comparison objectives of PARA
and STS, the results indicate successful transfer learning from PARA to STS.

After fine-tuning for SmartMul-Bert for PARA and STS with one loss, we obtained the PARA dev
set accuracy (0.866) and STS correlation (0.874). Notice that the multi-task learning approach, where
the losses from both tasks were combined, did not outperform the sequential training procedure in
SmartMul-Bert (PARA and STS). Although we hope to benefit from the richer representations derived
from auxiliary tasks, we might need more powerful or nuanced optimization that can differentiate
while optimize between the detailed specific needs for each task. Another observation we have for
SmartMul-Bert (PARA and STS) with one loss as shown in Figure 3 is the overall gradual increase in
both train and dev accuracies over the epochs. Such growth as well as the relatively steady difference
between the train and dev set performances, without significant divergence, may suggest that the
model is not overfitting, and moreover, it’s learning effectively just at a gradual pace.

For SmartMul-Bert for SST, PARA and STS, as shown in Table 1, we also saw a performance
degradation on SST and PARA compared to SmartTri-Bert, which may be due to the bad transfer
learning between one-sentence-input task (SST) and two-sentence-input tasks (PARA and STS).
However, the correlation of STS increases to 0.877, which is the best performance. It demonstrates
that STS needs transfer learning from PARA (maybe also from SST), possibly due to the lack of data
and diversity. Meanwhile, if we compare this model with our baseline Multi-Bert model, we can find
a huge improvement. They are both trained on three tasks, with one Bert backbone, and so we can
find the effectiveness of SMART and 2-input-structure to the transfer learning ability of the model.

Table 3: Test set performance metrics

SST test accuracy PARA test accuracy STS test correlation Overall test score
0.557 0.896 0.876 0.797

Our Ensemble model used SmartTri-Bert for SST and PARA, and SmartMul-Bert(SST+PARA+STS)
for STS to achieve the best ensemble performance on each task. As shown in Table 3, our Ensemble
model achieved SST test accuracy=0.557, PARA test accuracy=0.896, STS test correlation=0.876,
and overall test score=0.797, which ranks 2nd on the test leaderboard by March 16th.

We also performed various experiments for architecture and hyperparameter tuning. Firstly, for BERT
hidden dropout ablation study, we found that the best performance occurs when dropout=0.2,
displaying a best generalization ability and avoiding overfitting. Secondly, after trying different
head layer dropout probabilities, with dropout probability being 0 for both STS and SST did we
achieve the highest dev set accuracy, 0.870 and 0.550 for each as shown in the following Table 5.
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Meanwhile, we observe that as head dropout probability increases, both SST accuracy and STS
correlation decreases monotonically, and the train performance and dev performance increases or
decreases in the same direction. Two plots displaying this tendency are attached in appendix. Thirdly,
we did experiment for both one-layer and two-layer head for all tasks with SMART regularization
and other hyperparameters selected in advance, and gained the following results. One-layer yields
accuracy of 0.536 and 0.894, as a better architecture for SST and PARA than the two-layer head
(with 0.526 and 0.890). For STS task, with no weight decay for AdamW, two-layer structure renders
a higher correlation (0.867) than that with one-layer (0.860); however, when we set the weight decay
to be 1e-3, one-layer yields higher correlation (0.866) when compared with the two-layer’s (0.861).
Lastly, we experimented different weight decays for AdamW optimizer, with both 1e-4 and 1e-3
yielding the relative higher accuracy, 0.866. Detailed analysis are in the next section.

Table 4: Performance comparison of
different Bert hidden dropout

probabilities
Dropout Prob Correlation (max)

0.0 0.839
0.1 0.846
0.2 0.848
0.3 0.843
0.4 0.821
0.5 0.732

Figure 2: Correlation comparison plot of different Bert
hidden layer dropout probabilities for STS

Table 5: Dev set STS correlation and SST accuracy for
varying head dropout probabilities

Head Dropout Dev sts corr Dev sst acc
0.9 0.838 0.523
0.7 0.858 0.534
0.5 0.861 0.533
0.3 0.864 0.540
0.1 0.865 0.542
0 0.870 0.550

Table 7: STS Task Performance for
Various Weight Decay Values

weight_decay Dev set accuracy
0 0.860

1e-4 0.866
1e-3 0.866
1e-2 0.860

Table 6: Model Performance Across Different Head Layers and Parameters

Head Layer SST PARA STS STS
smart_weight=8, smart_weight=10, smart_weight=10, smart_weight=10,
weight_decay=0 weight_decay=0 weight_decay=0 weight_decay=1e-3

one-layer 0.536 0.894 0.860 0.866
two-layer 0.526 0.890 0.867 0.861

6 Analysis

For our baseline Multi-Bert model, it is sequentially trained on three tasks, so the performance of
the model highly depends on the similarity between tasks and the ability of the model to conduct
transfer learning. At that time, without SMART, 2-input-structure, and hyperparameter tuning, our
baseline model cannot adapt different tasks easily and lacks the generalization ability. Generalization
plays a significant role in a model’s resistance to differences in dataset distributions, including the
distribution differences between training and test sets, as well as among different task datasets (SST,
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PARA and STS). Therefore, after adding SMART, 2-input-structure, and better hyperparameters
to our model, with the same task domain, SmartMul-Bert performed much better than Multi-Bert,
and showed a better transfer learning ability between tasks, with a more generalizable and robust
embedding generated by the Bert. Obviously, we can observe that regularization methods like SMART
not only improve the development set accuracy of individual tasks but also enhance robustness to
different dataset distributions, thereby boosting the capability of transfer learning across various
tasks.

We found that MNRLoss didn’t perform well, and there are some possible reasons. Firstly, there
might be flaws in our implementation of MNR Loss. For the current dataloader, we opt to select
positive/negative samples within a batch, leading to an inconsistent number of samples K, which
could cause instability in the loss function, resulting in poor performance. Secondly, the efficacy of
MNR Loss heavily depends on the choice of negative samples. If the selected negative samples are
too similar to the positive ones (hard negatives), the model might overly focus on minor differences,
reducing its generalization capacity. Conversely, if the negative samples are too dissimilar from the
positive ones (easy negatives), the model might fail to learn effective features to distinguish between
positive and negative samples. Additionally, employing MNR Loss may require the model to capture
more complex data relationships, necessitating greater model capacity. Our model might suffer from
insufficient capacity or a lack of diversity in the training data.

In addition, it is a big challenge to train SmartMul-Bert with one single loss. It turned out that
we only have one objective for multiple tasks, which requires even stronger transfer learning ability
of the model. Given that the gradients are back-propagated by one additive loss for different tasks,
maybe in the future we need to set different loss weight for each task’s loss and add them up with
different weights. We can possibly take advantage of the reciprocal of the norm of the gradients of
each task’s loss, to calculate each loss weight, for more balance training between tasks.

With our Triple-Bert model, the decreasing correlation score when the hidden layer dropout
probability becomes larger indicates possible missing information and underfitting. While dropout
is a form of regularization that helps prevent overfitting by randomly deactivating a subset of neurons
during training, its application as the head dropout layer on SmartTri-Bert suggests a different
performance pattern than the hidden layer dropout. From Table 5, since increasing dropout leads to
worse performance for both SST and STS, it may suggest that the model is already well-regularized at
lower dropout rates, and further dropout only just deprives the model’s ability to learn well. Therefore,
this can be the results of the SmartTri-Bert, which already contains SMART implementation for
the model to regularize. Our study on the number of head layers indicates that a two-layer
structure, which is more complex, does not always guarantee superior performance over a single-layer
approach. As described in results section, single-layer head could achieve slightly higher accuracy
for all tasks with some pre-defined hyperparameters. This outcome indicates that it is possible to
overcomplicate the model with no obvious benefits, so we need to be cautious and pay attention to
balanced architecture when trying to extend or modify the model for better performance. Moreover,
we investigated the impact of the AdamW optimizer’s weight decay on STS task, and the empirical
results suggest that with some weight decay values, higher dev set accuracy can be achieved, by
moderately penalizing large weights during optimization. All of the architecture and hyperparameter
tuning experiments underscore the intricate and delicate balance when either applying regularization
techniques or adding more architectural complexities, thus making it crucial to find the "sweet spot"
where the model is sufficiently regularized but without overcomplication.

7 Conclusion

Our BERT’s Odyssey ends here. We tried different methods to tackle the difficulties in the journey,
including SMART regularization, MultipleNegativesRankingLoss, Multi-task learning, Triple-Bert
single task finetuning, architecture modification, and hyperparameter tuning. Finally, we build a
robust Bert model, which not only achieve excellent results on SST, PARA, and STS tasks, but also
shows fantastic ability of generalization and transfer learning between tasks. However, our BERT’s
Odyssey has some limitations, such as the lack of transfer learning ability between one-sentence-
input task and two-sentence-input task, and also some failures on some extensions, MNRLoss and
PALs-Bert (which is not shown on the paper).
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A Appendix

A.1 Additional Tables and Figures

Figure 3: Train and Dev Accuracies for Para and STS (one-loss, without SMART)

Figure 4: Train and dev SST accuracy with
different head layer dropout probabilities

Figure 5: Train and dev STS correlation of
different Bert hidden layer dropout probabilities
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