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Abstract

In this paper, we explore the design space of BERT model by studying how
different design choices will affect the performance on three downstream tasks.
Specifically, we enhance our model’s representational capabilities and performance
on specialized tasks through SimCSE or further pre-training before fine-tuning.
We emplement single-task finetuning – BERTrilogy, and multi-task finetuning
– BERTriad. In the BERTrilogy setting, we add SMART loss to mitigate the
overfitting problem. In the BERTriad setting, we use the specially designed "smart-
round-robin" routine to facilitate gradient surgery, which addresses the issue of
conflicting gradients in multitask learning. Finally, we implement ensembling the
predictions of our best models. Our best results achieve mean performance of
80.2% on the dev set and 79.6% on the test set, respectively.
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2 Introduction

The success of large pre-trained models such as BERT Devlin et al. (2018), GPT Brown et al. (2020)
has proven the effectiveness of transformer architectures in various natural language processing(NLP)
tasks, including text classification, question answering, machine translation, etc. However, these
models have limitations.They need task-specific finetuning and is not capable of performing multi-
tasks simultaneously. Multitasks learning has emerged as a promising approach to overcome these
limitations by enabling models to learn from multiple tasks at once, potentially improving their
generalization capabilities across a broader range of tasks.

In this project, we use pretrained embeddings from the BERT model as a starting point and try to adapt
various strategies to gain better performance on downstrean tasks including further pretraining,
SimCSE and multitask learning. Since many combinations of these approaches yields impressive
results, we decide to ensemble the predictions of our best models in different settings to advance
further, which has been proven empirically effective by Liu et al. (2019). See Figure 1 for the whole
framework of our method.

This paper continues with a quick review of related work in Section § 3. Then we discuss our model
approaches in Section § 4. We present our main experiments and corresponding results in Section § 5.
A comprehensive analysis for experimental results is given in Section § 6. Section § 7 constitutes of
our conclusion and ideas for future work.
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3 Related Work

The transformer architecture was originally proposed in Vaswani et al. (2017) for neural machine
translation. Its superior performance motivated Devlin et al. (2018) to propose a bidirectional
transformer-based language model named BERT. Specifically, Devlin et al. (2018) pre-trained the
BERT model using a large corpus without any human annotation through unsupervised learning tasks.
The pre-trained language model is then adapted to downstream tasks and further finetuned. The top
layer of the language model can be replaced by a task-specific layer and then continue to train on
downstream tasks.

While pre-trained models demonstrate promising capability and potentials in various downstream
tasks, they are tortured by the anisotropy problem Ethayarajh (2019), i.e., the learned embeddings are
closely clustered in the vector space, which severely limits their expressiveness. Gao et al. (2019)
shows that language models trained with tied input/output embeddings lead to anisotropy word em-
beddings, and this is further explored by Ethayarajh (2019) in pre-trained contextual representations.
To mitigate this problem, post-processing techniques such as eliminating the dominant principal
components Arora et al. (2017) and mapping embeddings to an isotropic distribution Li et al. (2020)
have been proposed. SimCSE Gao et al. (2021) adopts a simple contrastive learning framework
to obtain more aligned and uniform embeddings, which has greatly pushed the stat-of-the-art in
many downstream tasks. The unsupervised approach takes an input sentence and predicts itself in
a contrastive objective, with only standard dropout used as noise, while the supervised approach
incorporates annotated pairs from natural language inference datasets by using "entailment" pairs as
positives and "contradiction" pairs as hard negatives.

In the pursuit of versatile models, multitask learning Caruana (1997) serves as a powerful technique
aiming to enhance the performance and generalization ability of models across multiple tasks
simultaneously. Unlike traditional finetuning, which optimizes a pre-trained model on a single
specific task, multitask finetuning involves adjusting the model on several related tasks at the same
time, which can greatly improve model robustness and transferability. One potential risk for multitask
finetuning is that it is not always benificial depending on how the model is finetuned. Gradients
directions of different tasks may conflict with one another. Yu et al. (2020) recommend a technique
called Gradient Surgery. If two gradients are conflicting, the gradients are altered by projecting each
onto the normal plane of the other to prevent the interfering components of the gradient from being
applied to the network. In addition, due to the limited data from the target task and the extremely high
complexity of the pre-trained model, aggressive finetuning often makes the adapted model overfit
the training data of the target task and therefore does not generalize well to unseen data. Jiang et al.
(2020) introduced Smoothness-inducing Regularization to effectively manages the complexity of the
model and Bregman Proximal Point Optimization to prevent aggresive updating.

4 Approach

We first complete minimal BERT implementation, adding multihead self attention module, skip
connections, layer normalizations, position wise feed-forward layer and 10% dropout, based on the
provided skeleton code.

To find the optimal head architecture for each downstream task, we maintained consistent hyperpa-
rameters and conducted extensive experiments with a variety of potential head architectures. This
included linear layers or multi-layer perceptrons (MLPs) paired with various activation functions.
For the SST task, we observed that employing a Multi-Layer Perceptron as classifier yields the
most favorable results, reaching an accuracy of 53.3%. For QQP and STS, our initial intuitive
implementation is calculating the cosine similarity between the two [CLS] embeddings. This method
achieved an accuracy of about 80% for QQP and Pearson correlation of approximately 60% for
STS, respectively. Further, instead of treating two paired sentences separately, we feed BERT a long
sentence concatenated by each pair of sentences as our embedding. For QQP task, using a linear
layer with ReLU as activation achieves 89.3% accuracy, while for STS task, using a linear layer with
Sigmoid as its activation reaches Pearson correlation of 86.5%. Thus we established our multitask
baselines, BERTrilogy, for Sentiment Analysis Socher et al. (2013), Paraphrase detection Fernando
and Stevenson (2008) and Semantic Textual Similarity Agirre et al. (2013) by finetuning single-logit
BERT instances with cross entropy, binary cross entropy and squared error losses respectively. This
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Figure 1: Framework of our method. Before fine-tuning, we enhance the representational
capabilities through SimCSE or further pre-training. After finetuning, we implement ensembling the
predictions of our best models.

independent finetuning strategy has an advantage of allowing independent extension designs specific
to each dataset.

However, BERTrilogy has a disadavantage of more storage and less generalization, we further design
BERTriad – using round-robin and gradient surgery to train three tasks simultaneously.

Here are our extensions for BERTrilogy and BERTriad:

SimCSE. Learning universal sentence embeddings is a fundamental problem in natural language
processing and has been studied extensively in the research (Kiros et al. (2015); Hill et al. (2016)). It
is widely known that though pre-trained embeddings have good alignment, their uniformity is poor
(i.e., the embeddings are highly anisotropic) Wang and Isola (2020).

Gao et al. (2021) introduces a simple contrasive learning framework that greatly advances state-of-
the-art sentence embeddings, especially in Semantic Textual Similarity (STS) tasks. Specifically, the
contrastive loss function here encourages embeddings of similar samples to be close together, while
pushing embeddings of dissimilar samples further apart in the embedding space. It assumes a set
of paired examples D = {(xi, x

+
i )}mi=1, where xi and x+

i are semantically related. The contrastive
framework in Chen et al. (2020) takes a cross-entropy objective with in-batch negatives Henderson
and Liu (2017): let hi and h+

i denote the representations of xi and x+
i , the training objective for

(xi, x
+
i ) with a mini-batch of N pairs is:

ℓi = − log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

, (1)

where τ is a temperature hyperparameter and sim(h1, h2) is the cosine similarity h⊤
1 h2

∥h1∥·∥h2∥ . We
encode input sentences using BERT Devlin et al. (2018): h = fθ(x), and then fine-tune all the
parameters using the contrastive learning objective (Eq. 1). The unsupervised version of SimCSE
tries to predict the input sentence itself with only dropout Srivastava et al. (2014) used as noise, while
the supervised version builds upon natural language inference (NLI) datasets Conneau et al. (2018)
and incorporates annotated sentence pairs in contrastive learning. As illustrated in Figure 1, We
employ SimCSE method before finetuning.

Further Pre-training. To customize and enhance our model’s performance on specialized tasks,
we introduce separate further pre-training for both Sentiment Analysis Task and Paraphrase Detec-
tion/Semantic Textual Similarity Task (Figure 1). Given that the training corpora are inevitably
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imbalanced, the BERT model’s capability to understand text from different fields can vary signif-
icantly. Our intuition is that by further pre-training our model in task-specific corpora, it would
enable our model comprehend input sentences better, such as movie reviews in Sentiment Analysis
Task, and results in Figure 3 validates our assumption. For Sentiment Analysis Task, we use IMDB
50K dataset1, which is a comprehensive collection of movie reviews designed to facilitate sentiment
analysis research. We simply extract the input sentences for pre-training purpose (MLM task intro-
duced by Devlin et al. (2018)) without finetuning on it. For Paraphrase Detection/Semantic Textual
Similarity Task, we treat both of them as sentence-pair related tasks and do further pre-training on
SNLI2 Corpus follow the same step as previous task.

SMART Loss. While the pretraining - finetuning paradiam has fundamentally changed the land-
scape of natural language processing (NLP), aggressive finetuing often causes the finetuned model
to overfit the training data of downstream tasks and fail to generalize to unseen data due to limited
data resources from downstream tasks and the extremely high complexity of pretrained models. To
address such an issue in a principled manner, Jiang et al. (2020) propose a new learning framework
for robust and efficient fine-tuning for pre-trained models to attain better generalization performance.
The essence of SMART Loss includes regularization in the finetuning loss function and parameter
gradient step. By introducing our "adversaries" as our input (in this case, embeddings) with small
perturbations (randomly generated noise) added to it, it helps the model to be smoother with respect
to the input data. We penalize the model when its output changes significantly with these added
perturbations.

Instead of minimizing the typical loss L(θ) = 1
n

∑n
i=1 ℓ(f(xi; θ), yi) for some task-specific ℓ (in

our case cross entropy for SST and QQP, squared error for STS), they minimize L(θ) + λRs(θ),
where Rs(θ) = 1

n

∑n
i=1 max∥x̃i−xi∥p≤ϵ ℓ(f(xi; θ), f(x̃i; θ)) for some sampled embedded input

perturbation x̃. We use the ADAMW optimizer to solve this minimization instead of adopting their
Bregman Proximal point method.

Gradient Surgery. We addressed the issue of conflicting gradients in multitask learning by imple-
menting gradient surgery using PCGrad, a technique to mitigate negative transfer between tasks Yu
et al. (2020). This method projects the gradient of the i-th task gi onto the normal plane of another
conflicting task’s gradient gj , depicted mathematically below.

gi = gi −
gi · gj
||gj ||2

· gj (2)

We used the PyTorch implementation provided by Tseng (2020).

Round-Robin. We implement three kinds of round-robin routines to make BERTriad generalizable
across different tasks. The first one is "cycle-round-robin", which iteratively cycles through smaller
datasets, enabling each task to generate logits within every batch iteration. This method supports
gradient surgery becuase it can manipulate the gradients of all three tasks at the end of each batch.
However, "cycle-round-robin" encounters overfitting problems. The second routine, "shuffle-round-
robin", processes a random batch from one of the three dataloaders in each batch iteration. This
technique can not support gradient surgery. We further introduce the third approach: "smart-round-
robin." This method involves randomizing the process of smaller datasets in proportion to the largest
dataset during each batch iteration, thereby accommodating gradient surgery and avoiding overfitting.
The "smart-round-robin" method is illustrated in Supp. A.

Finally, our experiments yield many models that may be complementary. We implement ensembling
the predictions of our best models, which Liu et al. (2019) has shown to work well for BERT. For
SST and QQP tasks, we use the mode of the ensemble’s predictions, and for STS task, we use the
unweighted average. We utilize the best model from multi-task finetuning (BERTriad) and several
top models from single-task setting (BERTrilogy), employing a strategy where models are added to
each task’s ensemble only if they improve or maintain the dev set performance.

1https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews/
data

2https://nlp.stanford.edu/projects/snli/
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5 Experiments

5.1 Data

Table 1: Tasks and corresponding datasets. "Cl." stands for classification and "Reg." for regression.
The number in the brackets denotes the number of classes for the classification or the range for
regression, respectively.

Task Type Dataset Examples
Sentiment Analysis Cl. (5) Stanford Sentiment Treebank (SST-5) 11, 855

Paraphrase Detection Cl. (2) Quora question pairs dataset (QQP) 400, 000
Semantic Textual Similarity Reg. (0-5) SemEval STS Dataset (STS) 8, 628

An brief overview of our downstream tasks and corresponding datasets is shown in Table 1.

For the sentiment analysis task, the Stanford Sentiment Treebank Socher et al. (2013) consists of
11,855 single sentences from movie reviews extracted from movie reviews. The dataset was parsed
with the Stanford parser3 and includes a total of 215,154 unique phrases from those parse trees,
annotated by 3 human judges. Each phrase has a label of negative, somewhat negative, neutral,
somewhat positive, or positive. For the paraphrase detection task, the Quora dataset Fernando and
Stevenson (2008) consists of 400,000 question pairs with binary labels indicating whether particular
instances are paraphrases of one another. For the semantic textual similarity task, the SemEval STS
Benchmark dataset Agirre et al. (2013) consists of 8,628 different sentence pairs of varying similarity
on a scale from 0 (unrelated) to 5 (equivalent meaning).

5.2 Evaluation method

Following the default project handout, we use the accuracy as the evaluation metric for both the
sentiment analysis and paraphrase detection tasks. For semantic textual similarity task, we calculate
the Pearson correlation of the true similarity values against the predicted similarity values in Agirre
et al. (2013) as the evaluation metric.

5.3 Experimental details

All experiments are implemented in Pytorch v1.13.0 and conducted on a workstation with 1 Nvidia
3090 GPU. We run 10 epochs with a finetune learning rate of 1e − 5 and a hidden-layer dropout
probability of 0.3 for all three tasks. We set our batch size to be 16. The model is optimized by
AdamW algorithm with weight decay 1e−6. We use Jiang et al. (2020)’s SMART loss with symmetric
KL-divergence for the classification tasks SST and QQP, and squared error for STS regression. Using
their recommended default 1 sampling step, ϵ = 1e − 6, σ = 1e − 5, η = 1e − 3, p = ∞, we
experimented with λS as showing in Figure 4.

5.4 Results

Head Architectures. We conducted thorough experiments to find the optimal head architecture for
each downstream task. As illustrated in Figure 2 (a), for the SST task, we observed that employing
a Multi-Layer Perceptron as classifier yields the most favorable results, reaching an accuracy of
53.3%. For QQP task, we can see in Figure 2 (b) that using a linear layer with ReLU as activation
achieves 89.3% accuracy, while for STS task, using a linear layer with Sigmoid as its activation
reaches Pearson correlation of 86.5% (Figure 2 (c)). These three optimal head architectures are used
in the multi-task setting.

Further Pre-training. As demonstrated in Figure 3, the overall performance improves a lot no
matter which head architectures we use for downstream tasks. Notably, in SST task, the dev accuracy
increases from 52.2% to 54.3%, and in STS task, the dev corr increases from 86.4% to 88.4%.

3https://nlp.stanford.edu/software/lex-parser.shtml
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Figure 2: The dev accuracy curves of (a) SST head architectures, (b) QQP head architectures
and (c) STS head architectures.
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Figure 3: Effectiveness of further pretraining. Embedding obtainded by further pretraining tend to
have better performance after task-specific finetuning.

SMART loss. As depicted in Figure 4, we observe that setting λS = 5 yields favorable results on
the SST task, achieving an accuracy of 54.1%, an improvement from 52.0% without the SMART
loss. Additionally, we note that higher weights achieve best dev accuracy in later epochs. Specifically,
for λS > 10, the model is seen to reach its peak accuracy subsequent to 10 epochs. For instance,
setting λS = 100 allows the model to achieve a dev accuracy of 53.2% by the 24th epoch.

Ensembling. In our methodology, we strategically leverage a combination of the most effective
model emerging from multi-task finetuning, which we refer to as BERTriad, along with a selection
of 4 to 6 top-performing models from a single-task setting, collectively termed BERTrilogy.On the
development (dev) dataset, our ensemble method attained an impressive average accuracy of 80.2%,
while on the test dataset, we average test accuracy of 79.6% in Table 3.
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Table 2: Dev set results of the BERTrilogy and BERTriad.

Method SST-5 (dev) QQP (dev) STS-B (dev) Avg. (dev)

BERTrilogy

- 53.3 88.9 86.6 76.3
SMART 54.3 89.1 87.8 77.1
SimCSE 53.5 88.5 87.0 76.3

SMART & SimCSE 53.6 88.7 86.8 76.4

BERTrilogy with
further pre-training

- 55.0 89.2 88.3 77.5
SMART 55.2 89.3 88.4 77.6

BERTriad
cycle-round-robin 50.0 88.4 86.4 74.9

shuffle-round-robin 48.7 89.2 85.5 74.5
smart-round-robin 49.9 88.8 86.7 75.1

BERTriad with
further pre-training

cycle-round-robin 51.2 88.2 86.2 75.2
shuffle-round-robin 52.4 88.5 86.9 75.9
smart-round-robin 53.1 88.4 87.1 76.2

Ensemble 5-7 models 56.0 90.0 89.2 80.2

Table 3: Test set results for the original and ensembled models.

Method SST-5 (test) QQP (test) STS-B (test) Avg. (test)

Best Results before Ensembling 53.2 89.1 88.3 78.7
Ensemble 54.3 90.0 89.1 79.6

6 Analysis

We explored the enhancement of BERT model’s performance through various techniques, namely
SimCSE, further pre-training, SMART loss, and different multitasking approaches, culminating in
an ensemble strategy. Our findings suggest significant improvements across multiple NLP tasks,
demonstrating the efficacy of our proposed methodologies.

SimCSE & Further Pre-training Our results indicate that both SimCSE and further pre-training
contribute substantially to the model’s performance improvements. SimCSE enhances the models’s
ability to generate more uniform and aligned sentence embeddings. This improvement is particularly
evident in the Semantic Textual Similarity Task, where the nature of the task directly benefits from
accurate pair predictions.

Further pre-training on task-specific corpora helps tailor the BERT model to understand the nuances
of different domains, such as movie reviews for Sentiment Analysis and question pairs for Paraphrase
Detection and Semantic Textual Similarity. The significant performance increases observed in these
tasks after further pre-training validate the value of customizing the pre-training phase to align closely
with the downstream tasks.

SMART Loss & Multitask Learning Approaches The implementation of SMART loss aimed at
mitigating the overfitting problem often encountered in fine-tuning pre-trained models on specific
downstream tasks. Our experiments showed that incorporating SMART loss leads to more robust
models that could generalize better to unseen data, as evidenced by the performance gains in Sentiment
Analysis and Paraphrase Detection tasks. Empirically, using SMART loss weight 5 yields the best
result. This is reasonable since if we take small weight, the SMART loss would basically make no
contributions to the loss function. On the other hand, if we take to much larger weight, the SMART
loss would take the dominance, thus prevent our model from learning the downstream task.

Our multitask learning approach, particularly the novel "smart-round-robin" routine, effectively
managed the challenge of conflicting gradients in multitask learning. By facilitating gradient surgery
within this framework, we observed improved performance and reduced overfitting, highlighting
the potential of multitask learning to enhance model robustness and efficiency across several tasks
simultaneously.
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Figure 4: Effect of SMART loss weight on SST dev accuracy.

Ensemble Strategy The ensemble strategy, combining the strengths of individual models from both
single-task and multitask settings, emerged as a powerful method to leverage diverse perspectives and
strengths. This approach led to notable performance gains across all tasks, as shown in Table 2 and
3. An interesting finding is that ensembling a bunch of single task models and one multitask model
could yield better performance on individual tasks than using the best single task models alone. This
outcome suggests a complementary relationship between the deep, task-specific insights learned by
single task models and the broad, generalizable understanding developed by the multitask model.

7 Conclusion

Our study presents a comprehensive examination and improvement of BERT models for NLP
tasks, implementing and evaluating techniques such as SimCSE, further pre-training, SMART loss,
and innovative multitask learning strategies. We achieve the best dev and test accuracy on
the leaderboard. Our results underscore the importance of tailored pre-training, regularization
techniques, and thoughtful integration of multitask learning to enhance model performance and
generalization. The ensemble approach, combining the strengths of individual models, emerged as
a particularly powerful strategy, leading to notable performance gains across different tasks. This
reinforces the idea that while single models can be effective, the synergy of multiple models, each
bringing unique perspectives and strengths, can lead to superior performance.

However, our work is not without limitations. The specific configurations and techniques used were
tailored to our selected tasks and datasets, so further research is needed to assess their generalizability
to other contexts.

For future work, we aim to explore more efficient and scalable techniques for model training and
ensembling. Investigating the transferability of our approaches to other languages and more diverse
sets of tasks will also be a priority. Furthermore, delving deeper into the interpretability of the
ensemble models could provide valuable insights into their decision-making processes and help
identify areas for further improvement. By pushing the boundaries of what’s possible with BERT and
NLP models, we hope to contribute to the development of more nuanced, robust, and effective tools
for language processing, ultimately advancing the field and its applications.
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9: if len(sst_train_dataloader) − sst_batches_processed ≥ max_iterations − i or

number ≤ len(sst_train_dataloader)
max_iterations then

10: sst_batch← next(sst_iter)
11: sst_batches_processed← sst_batches_processed+ 1
12: optimizer.zero_grad()
13: loss_sst← model(sst_batch)
14: Append loss_sst to losses
15: end if
16: ...
17: optimizer.pc_backward(losses)
18: optimizer.step()
19: end for
20: end for
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B SMART: Adversarial Loss Calculation

Algorithm 2 SMART: Adversarial Loss Calculation

1: Data: f̂ : model, {xi}Q1 : model embeddings, {zj}B1 : batch inputs, σ2: variance of noise,
η = 10−3: learning rate for adversarial update, ϵ = 10−5: max perturbation.

2:
3: begin
4: f̂ set to eval mode
5: yj ← f̂(zj , x)
6: for xi ∈ Q do
7: x̂i ← xi + vi with vi ∼ N (0, σ2I)
8: end
9: for yj ∈ B do

10: h̃j ← ∇x̃ls(y, f̂(zj , x))
11: end
12: g̃i ←

(
1

|B|
∑

i h̃j

)(
∥ 1
|B|

∑
i h̃j∥∞

)−1

13: for xi ∈ Q do
14: x̃i ← P∥x̃i+ηg̃i−xi∥≤ϵ(x̃i + ηg̃i)
15: end
16: yadvj ← f̂(zj , x̃)

17: Ladv,classification ← 1
|B|

∑
j∈B DKL(yj∥yadvj ) +DKL(y

adv
j ∥yj)

18: Ladv,regression ← 1
|B|

∑
j∈B ∥yj − yadvj ∥2

19: f̂ set to train mode
20: end
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