
MT-DNN with SMART Regularisation and
Task-Specific Head to Capture the Pairwise and

Contextually Significant Words Interplay
Stanford CS224N Default Project

Haoyu Wang
Department of Computer Science

Stanford University
haowang3@stanford.edu

Abstract

In this study, we develop a novel BERT-small-based architecture tailored for multi-
task fine-tuning on three downstream NLP tasks: sentiment analysis on the SST
dataset, paraphrase detection on the Quora dataset, and evaluating semantic textual
similarity on the STS Benchmark dataset. Our architecture proposes task-specific
head enhancements, incorporating 1D convolutions and BiLSTM for sentiment
classification, and a shared pairwise word interaction model (PWIM) for both
sentence pair tasks, each followed by dedicated task-specific classifiers. We also
introduce an innovative training paradigm to address disparities in dataset size
scale across tasks. Initially, we employ the Smoothness-Induceing Adversarial
Regularization technique (SMART) for further pre-training to refine our contextual
embeddings. Subsequently, LoRA and adapters are integrated for efficient fine-
tuning for each specific task. Notably, the Quora dataset exclusively further fine-
tunes the shared PWIM layer, which is then frozen, followed by the STS task, which
only fine-tunes its task-specific components. This multi-faceted approach shows
our architecture’s generalisation on multiple downstream tasks while navigating
the challenges posed by varying dataset scales.

1 Introduction

In the evolving landscape of NLP, the paradigm of pre-training followed by fine-tuning on multiple
downstream tasks has emerged as a standard for equipping models with the versatility to excel at
diverse challenges simultaneously. The general pipeline typically involves further pre-training to
enhance the contextual embeddings with task-specific datasets to tailor the model for particular
applications, followed by dedicated fine-tuning for task-specific heads. However, regularization
emerges as a critical concern during further pre-training, given the underlying BERT model is
extremely complex while the limited datasets. So without careful regularisation and we further
pre-train aggressively on these task datasets, it will lead to an overfitting contextual embedding,
compromising its ability to generalize to new, unseen data and undermining the potential benefits of
any subsequent task-specific adjustments.

When doing task-specific fine-tuning, for sentiment classification, capturing the nuanced interplay
between contextually significant words is crucial for accurately gauging sentiment. Similarly, or
tasks assessing sentence similarity, effective models mimic human cognition, comparing semantic
similarities across sentences and identifying corresponding elements i.e. the model needs to have
the capacity to handle the correspondence pairwise words regardless their actual positions in their
sentences. Besides that, a significant challenge in this multi-task learning framework is the varying
scale of datasets for different tasks. If we want to employ complex heads to capture these pairwise
word interactions for each task, that means we necessitate substantial training data for effective
generalisation. However, SST and STS datasets being relatively small (less than 10,000 samples)

Stanford CS224N Natural Language Processing with Deep Learning

and the Quora dataset significantly larger (over 1 million samples), posing a dilemma for employing
complex interaction head for SST and STS, but can be trained for Quora task. It is noticeable that
the Quora and STS tasks, while distinct in their binary versus regression nature, share underlying
similarities that lend themselves to shared model architecture. By leveraging a shared pairwise word
interaction layer for both tasks (PWIM), complemented by task-specific classifiers, we can harness
the knowledge gained from the Quora task to enhance performance on the STS task, thus addressing
the challenges posed by dataset scale disparities and task-specific requirements.

2 Related Work

2.1 Smoothness-Inducing Adversarial Regularization & Bregman Proximal Point
Optimization (SMART)

SMART encompasses two regularization techniques; however, this study focuses solely on
smoothness-inducing adversarial regularization and Jiang et al. (2019)’s original work demonstrates
significant generalization improvements attributed primarily to this approach. By endorsing the
concept of local Lipschitz continuity, this regularization technique ensures minimal changes in the
function f output with the introduction of a small perturbation (by lp norm ϵ) to the input data.
Illustrative examples in the paper depict the decision boundary in a 2D classification problem (Fig-
ure 1), with and without regularization, underlining its potential to mitigate overfitting during further
pre-training on downstream task data.

Figure 1: Decision boundary with and without SMART regularization.

2.2 1D Convolution Layer and Bi-LSTM for Sentiment Classification

Tam et al. (2021) introduces a pipeline incorporating a 1D convolution layer followed by a max-
pooling layer and multi-layer Bi-LSTM to discern the intricate contextually significant words interplay
(Figure 2), thereby enhancing sentence embedding. Drawing inspiration from this model, our
implementation adapts the concept by employing a tailored 1D convolution and single-layer Bi-
LSTM by considering the dataset size constraints, which will be discussed in detail later.

Figure 2: 1D convolution layer followed by Bi-LSTM architecture.

2.3 Pairwise Word Interaction Model (PWIM)

Proposed by He and Lin (2016), the PWIM (Figure 3) addresses word correspondence across
sentences, irrespective of their positions. It evaluates pairwise word similarity using three metrics:

2

cosine distance, L2 Euclidean distance, and dot product, generating a similarity cube where each
metric represents a channel. This cube is then processed through a deep convolutional neural network
as a feature extractor. While the original paper employs a specific DNN architecture shown below,
we have adapted a ResNet version with equivalent depth to leverage residual connections. We
hypothesize that, without these connections, the combined depth of the DNN and the underlying
BERT model would exacerbate vanishing gradient issues, where our experimental results later begin
to substantiate.

Figure 3: PWIM architecture employing a deep CNN for feature extraction.

2.4 Efficient Fine-Tuning: LoRA and Adapters

Efficient fine-tuning techniques, such as Low-Rank Adaptation (LoRA) and adapters, present in-
novative approaches to enhance pre-trained models like BERT for specific tasks with minimal
computational overhead. These methods introduce additional task-specific layers into the origi-
nal architecture, allowing for the fine-tuning of a limited subset of model parameters. During the
fine-tuning process, the core parameters of the BERT model are frozen, and only the newly added
task-specific layers are updated.

Originally devised to curtail the storage burden associated with maintaining separate, fully fine-tuned
versions of BERT for each task, the application of LoRA (Hu et al., 2021) and adapter(Houlsby et al.,
2019) in this work extends beyond mere efficiency. By focusing fine-tuning efforts on task-specific
layers added on top of a high-performing contextual embedding base, these techniques aim to further
enhance model performance. The rationale behind this approach is to leverage the refined general
capabilities of the pre-trained model while affording the flexibility to tailor its behavior to the nuances
of individual tasks through targeted parameter adjustments.

3 Approach

We begin with a baseline model that utilizes the [CLS] token embedding followed by a task-specific
linear classifier for each task. BERT model parameters are frozen, with only the classifiers being
trainable. Subsequently, we extend this baseline by incorporating several techniques to enhance
model performance, as will be detailed in the experimentation section.

3

3.1 Smoothness Inducing Adversarial Regularisation

The smoothness inducing adversarial regularisation technique is mathematically described as follows:

min
θ

F (θ) = L(θ) + λsRs(θ), (1)

where L(θ) represents the loss function:

L(θ) =
1

n

n∑
i=1

l(f(xi; θ), yi), (2)

with l(·, ·) being the task-specific loss function. λs > 0 is a tunable parameter, and Rs(θ) is the
smoothness-inducing adversarial regularizer, defined as:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ls(f(x̃i; θ), f(xi; θ)), (3)

where ϵ > 0 is another tunable parameter. For classification tasks (sst and quora), the function f(·; θ)
outputs a probability simplex, with ls chosen as the symmetrized KL-divergence.

ls(P,Q) = DKL(P∥Q) +DKL(Q∥P). (4)

For the regression task (sts), f(·; θ) outputs a scalar within [0,5], with ls being the squared loss.

As we only implement smoothness inducing adversarial regularisation, so the implementation algo-
rithm is slightly different from the pseudo-code of original paper which exactly implements both parts
of SMART algorithm. The pseudo-code for our SMART layer implementation can be referenced to
Appendix A

3.2 1D Convolution and Bi-LSTM Layer for SST

For SST, we employ a tailored 1D convolution layer, foregoing the max-pooling layer of the original
design, followed by a single-layer Bi-LSTM to capture the intricate word interplay. Each embedding
feature is treated as a channel, producing a tensor of the same shape as the input. The output from the
1D convolutional layer is then processed through the Bi-LSTM, with max pooling applied to generate
a final sentence embedding vector matching the embedding size of the BERT layer.

3.3 Pairwise Word Interaction Model (PWIM)

We propose two versions of the PWIM, utilizing either a traditional DNN or a ResNet architecture as
the feature extractor. For the ResNet version, we utilize residual connections to potentially alleviate
the vanishing gradient problem, given the combined depth of the network and the underlying BERT
model. Refer to Appendix B for implementation details.

3.4 Further Pre-training with Efficient Fine-tuning

As discussed earlier in this work, we introduce a BERT-based architecture augmented with task-
specific layers, alongside a nuanced training paradigm tailored to optimally harness task similarities
while accommodating the variance in dataset scales among different tasks. Our approach commences
with an initial further pre-training phase employing simplified SMART regularization. This phase
targets a BERT-based model supplemented with a Conv1D & Bi-LSTM layer for SST and a shared
PWIM layer for both the Quora and STS tasks.

Subsequently, we implement an efficient fine-tuning process wherein only the task-specific com-
ponents—comprising LoRA, adapters, and task-specific headers are made trainable. This training
strategy proceeds in a sequential manner, with tasks being fine-tuned in succession. It is noteworthy
that due to the inherent similarity shared by Quora and STS and dataset size disparity between the
Quora and STS tasks—with Quora’s dataset vastly outnumbering that of STS, the PWIM layer, shared
by both tasks, undergoes fine-tuning exclusively with the Quora dataset. Upon transitioning to the
STS task, the PWIM layer is then frozen. This approach not only ensures consistency when fine
tuning in a sequential manner but also leverages the natural task affinity, thereby fostering a more
robust and adaptable model capable of addressing the nuanced requirements of each specific task.

4

Figure 4: BERT-based model architecture

4 Experiments

4.1 Data

Our foundational minBERT architecture is initially pretrained through two unsupervised learning
tasks on Wikipedia content: masked language modeling (MLM) and next sentence prediction. The
pretrained model is then used for specialized fine-tuning on three downstream tasks utilizing datasets
from the Stanford Sentiment Treebank (SST), Quora, and the SemEval STS Benchmark (STS). The
SST dataset has 11,855 single-sentence movie reviews, each categorized across a spectrum from
negative to positive sentiments. The Quora dataset contains 400,000 question pairs, each annotated
with a binary indicator signifying whether one question rephrases the other. The STS dataset presents
8,628 sentence pairs, each assessed on a scale from 0 (indicating no relation) to 5 (signifying identical
meanings).

4.2 Evaluation method

For assessing performance on the SST and Quora tasks, we employ accuracy as the primary metric,
reflecting the model’s ability to correctly classify each instance within the respective categories.

For the STS task, we utilize the Pearson correlation coefficient to gauge the alignment between the
model’s predictions and the actual labels, acknowledging the continuous and regression nature of this
task.

4.3 Experimentation Details

We detail the experimental setup and configurations employed to evaluate our models:

1. Early Stopping: We employed an early stopping strategy for training, applicable in both
the baseline model phase and during further pre-training and efficient fine-tuning. The
early stopping criteria were set with an improvement threshold of 1 × 10−3 for baseline

5

and efficient fine-tuning. For the SST and STS tasks, a patience parameter of 5 epochs
was utilized, whereas, for the Quora task, the patience was set to 3 epochs. For further
pre-training phases, aiming to achieve a highly performant yet generalizable contextual
embedding, we adopted an improvement threshold of 1× 10−2 and a patience of 1 epoch,
saving the model only when performance improvements on the validation dataset exceeded
the threshold.

2. SMART Implementation: The hyperparameters for our SMART implementation adhere to
those outlined in the original paper, with the SMART weight λ treated as a tunable parameter
within the set {3, 5}. To determine the optimal perturbation for maximizing the SMART
loss, we set the perturbation size (ϵ) to 1 × 10−5, the noise initialization variance (σ) to
1× 10−5, the learning rate for perturbation updates (η) to 1× 10−3, and the number of steps
for solving the optimization problem to 1.

3. MT-DNN Configuration: Following Liu et al. (2019), we implemented a multi-task data
loader that, at each step, loads a batch from one of the tasks. The loss weights for each task
were inversely proportional to their dataset sizes to address the imbalance across the three
downstream tasks.

4. Handling Different Loss Scales: The SST task utilized cross-entropy loss, the Quora
task employed BCE loss, and the STS task adopted MSE loss. To manage potential scale
differences among these losses, we introduced trainable loss weights as a novel solution.

5. Efficient Fine-Tuning: In line with the original paper’s guidelines, we incorporated LoRA
exclusively for the query and value computations, setting the LoRA rank to 4. Adapters
were added following both the attention and output layers, with an adapter size of 64.

4.4 Results

Table 1: Performance Metrics Across Different Models

Model Type SST Acc Para Acc STS Corr Score
Baseline 0.381 0.651 0.187 0.542
MT-DNN+PWIM (dcnn) 0.520 0.742 0.829 0.725
MT-DNN+PWIM (dcnn)+conv1d_bilstm 0.497 0.717 0.813 0.707
MT-DNN+PWIM (resnet) 0.528 0.812 0.863 0.757
MT-DNN+PWIM (resnet)+smart (3) 0.517 0.859 0.846 0.766
MT-DNN+PWIM (resnet)+conv1d_bilstm+smart (3) 0.525 0.848 0.841 0.765
MT-DNN+PWIM (resnet)+conv1d_bilstm+smart (3) + learned_loss_w 0.524 0.847 0.842 0.764
MT-DNN+PWIM (resnet)+conv1d_bilstm+smart (5) 0.529 0.844 0.851 0.766
MT-DNN+PWIM (resnet)+conv1d_bilstm+smart (5)+effi_ft (dev) 0.531 0.861 0.870 0.776
MT-DNN+PWIM (resnet)+conv1d_bilstm+smart (5)+effi_ft (test) 0.529 0.871 0.858 0.776

For the quantitative analysis, the initial results from the baseline model revealed a huge disparity in
performance between the similar tasks of paraphrase detection (Quora) and semantic textual similarity
(STS). This highlighted the challenge posed by the small size of the STS dataset compared to the
Quora dataset, leading to overfitting in STS and underscoring the importance of leveraging task
similarities for improved outcomes.

Transitioning to the Multi-Task Deep Neural Network (MT-DNN) framework and integrating the
Pairwise Word Interaction Model (PWIM) for sentence pair tasks significantly enhanced performance
across all tasks, where SST even surges a lot from 0.381 to 0.520 because MT-DNN itself is actually
a method of generalisation, Quora acc also increases from 0.651 to 0.742 by leveraging the complex
PWIM interaction layer and its large dataset for generalisation. The most notbale increase is for STS,
which saw a remarkable increase from 0.187 to 0.829. This improvement was largely attributed to
the knowledge transfer from the Quora task.

Experimentation with a more complex SST head incorporating a 1D convolution and Bi-LSTM layer
to capture the contextually significant interplay, however, resulted in a performance decline due to
overfitting, given the limited size of the SST dataset. Additionally, as we employ a loss-weighting
strategy based on inverse dataset sizes, it suggested that inefficient loss backpropagation from SST to
the underlying BERT model also adversely affected performance of Quora and STS.

6

The implementation of a ResNet architecture within PWIM, utilizing residual connections, further
improved performance, validating our hypothesis on the benefits of enhanced information flow and
stable gradient updates with Quora raising from 0.742 to 0.812, and STS from 0.829 to 0.863.

The simplified version of SMART regularization technique then applied during further pre-training
yielded even better generalization, with the overall score increased from 0.757 to 0.766, especially
Quora increased from 0.812 to 0.859. We then try to tune the SMART weight hyperparameter and
add the learned loss weight, but not achieve too much improvement further.

Final fine-tuning stages, incorporating LoRA and adapters and freezing BERT’s underlying layers,
fine-tuning sequentially for each task in a paradigm we stated in the Approach section, confirmed our
approach’s efficacy. On the validation dataset, this strategy achieved accuracies of 0.531 for SST,
0.861 for paraphrase detection, and 0.870 for STS correlation, culminating in an overall score of
0.776. Test dataset results mirrored these achievements, with SST Acc = 0.529, Para Acc = 0.871,
STS corr = 0.858, and Overall Score = 0.77, underscoring the robustness and effectiveness of our
fine-tuning paradigm.

5 Analysis

The majority of our work was to train not only a high-performing (high validation accuracy) model
during the further pre-training phase but also to ensure that the contextual embeddings were gener-
alizable. A model displaying high validation performance but near-perfect training accuracy risks
forfeiting the potential benefits offered by task-specific layers for further performance enhancements.
Thus, we posit that a high-quality, generalizable contextual embedding is one that achieves a given
level of validation performance in the fewest possible epochs, with minimal discrepancy between
training and validation scores.

Figure 5: DCNN vs ResNet

Upon examining the impact of employing ResNet and SMART regularization during further pre-
training, several observations were made. Firstly, comparing the performance of models using
DCNN and ResNet architectures for the paraphrase (para) task revealed a clear advantage for ResNet
(Figure 5), showcasing superior performance. In the STS task, while both architectures ultimately
delivered comparable results, ResNet achieved this performance in significantly fewer epochs, thereby
reducing the risk of overfitting.

7

Figure 6: DCNN (w/ conv1d_bilstm)

From figure 6, upon substituting the SST head with a conv1d-biLSTM structure without incorpo-
rating SMART regularization, a pronounced increase in training accuracy for SST task was noted,
approaching near-perfection. However, this did not translate to improvements in validation perfor-
mance, suggesting a depletion of potential for further enhancements. This phenomenon of extreme
overfitting within the SST task also detrimentally impacted the Quora and STS tasks due to their
shared underlying BERT layer.

Figure 7: Smart

From figure 7, the application of SMART regularization demonstrated its efficacy: the SST task
reached its performance peak within just 3 epochs, compared to 5 without SMART. For the Quora

8

task, performance goals were met in 3 epochs with SMART, as opposed to 10 epochs without it.
Although a slight decline in STS validation performance was observed when employing SMART, the
training-validation discrepancy was notably smaller, indicating enhanced generalization. Ultimately,
the most robust overall performance, facilitated by SMART, was attained within three epochs—a
significant improvement over the 5 epochs required in its absence. This analysis underscores the
critical role of advanced architectures like ResNet and regularization techniques such as SMART in
crafting a highly generalizable and efficient training paradigm.

6 Conclusion

In our work, we implemented a BERT-based architecture and develop a new paradigm by leveraging
the common features in task nature shared by Quora and STS. In order to train a best performing model,
when we do further pre-training, we should train a both high-quality and generlisable contextual
embedding to avoid depletion of future improvement from efficient fine-tuning at this step. Our future
work can attempt very deep CNN architecture in PWIM layer and multi-layer bi-LSTM in SST head
to increase the performance further.

References
Hua He and Jimmy Lin. 2016. Pairwise word interaction modeling with deep neural networks for

semantic similarity measurement. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
937–948, San Diego, California. Association for Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning
for nlp. In International conference on machine learning, pages 2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685.

Hao Jiang, Peng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019. Smart: Robust
and efficient fine-tuning for pre-trained natural language models through principled regularized
optimization. arXiv preprint arXiv:1911.03437.

Sakirin Tam, Rachid Ben Said, and Ö. Özgür Tanriöver. 2021. A convbilstm deep learning model-
based approach for twitter sentiment classification. IEEE Access, 9:41283–41293.

A Appendix

def forward(self, batch: dict, state: Tensor, task: str) -> Tensor:
Initialization and noise generation
for sentence pair tasks (Quora and STS),
we need to initialise noise for each input sentence embedding
noise = torch.randn(batch_size, seq_len, embed_size) * noise_var

for i in count():
Compute perturbed states
state_perturbed = eval_fn[task](token_ids, attention_mask, noise=noise)
if last step:

return final loss
Compute perturbation loss and update noise
loss = loss_fn[task](state_perturbed, state)
noise_gradient, = torch.autograd.grad(loss, noise)
Move noise towards gradient to change state as much as possible
step = noise + step_size * noise_gradient
Normalize new noise step into norm induced ball

9

https://doi.org/10.18653/v1/N16-1108
https://doi.org/10.18653/v1/N16-1108
https://doi.org/10.1109/ACCESS.2021.3064830
https://doi.org/10.1109/ACCESS.2021.3064830

step_norm = norm_fn(step)
noise = (step / step_norm) * epsilon
Reset noise gradients for next step
noise = noise.detach().requires_grad_()

B Appendix

Layer Type Specifications
Convolutional Layer 1 nn.Conv2d(3, 128, kernel_size=3, stride=1, padding=1)
Batch Normalization 1 nn.BatchNorm2d(128)
ReLU Activation 1 F.relu()
Max Pooling 1 nn.MaxPool2d(kernel_size=2, stride=2)
Dropout 1 nn.Dropout(0.5)
Convolutional Layer 2 nn.Conv2d(128, 164, kernel_size=3, stride=1, padding=1)
Batch Normalization 2 nn.BatchNorm2d(164)
ReLU Activation 1 F.relu()
Max Pooling 1 nn.MaxPool2d(kernel_size=2, stride=2)
Dropout 2 nn.Dropout(0.5)
Convolutional Layer 3 nn.Conv2d(164, 192, kernel_size=3, stride=1, padding=1)
Batch Normalization 3 nn.BatchNorm2d(192)
ReLU Activation 1 F.relu()
Max Pooling 1 nn.MaxPool2d(kernel_size=2, stride=2)
Dropout 3 nn.Dropout(0.5)
Convolutional Layer 4 nn.Conv2d(192, 192, kernel_size=3, stride=1, padding=1)
Batch Normalization 4 nn.BatchNorm2d(192)
ReLU Activation 1 F.relu()
Max Pooling 1 nn.MaxPool2d(kernel_size=2, stride=2)
Dropout 4 nn.Dropout(0.5)
Convolutional Layer 5 nn.Conv2d(192, 128, kernel_size=3, stride=1, padding=1)
Batch Normalization 5 nn.BatchNorm2d(128)
ReLU Activation 1 F.relu()
Adaptive Max Pooling nn.AdaptiveMaxPool2d((1, 1))
Dropout 5 nn.Dropout(0.5)
Fully Connected Layer 1 nn.Linear(128, 1024)
Fully Connected Layer 2 nn.Linear(1024, output_classes)

Table 2: DNN Architecture for PWIM

10

Layer Type Specifications

Residual Block 1

Projection (if applicable)
Conv: nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
Batch Norm: nn.BatchNorm2d(128)
ReLU: F.relu
Dropout: nn.Dropout(0.5)
Conv: nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
Batch Norm: nn.BatchNorm2d(128)
Dropout: nn.Dropout(0.5)
Residual Connect
ReLU: F.relu

Residual Block 2 Same as Block 1
Residual Block 3 Same as Block 1
Residual Block 4 Same as Block 1
Residual Block 5 Same as Block 1
Adaptive Max Pooling nn.AdaptiveMaxPool2d((1, 1))
Fully Connected Layer 1 nn.Linear(128, 1024)
Fully Connected Layer 2 nn.Linear(1024, output_classes)

Table 3: ResNet Architecture for PWIM

11

	Introduction
	Related Work
	Smoothness-Inducing Adversarial Regularization & Bregman Proximal Point Optimization (SMART)
	1D Convolution Layer and Bi-LSTM for Sentiment Classification
	Pairwise Word Interaction Model (PWIM)
	Efficient Fine-Tuning: LoRA and Adapters

	Approach
	Smoothness Inducing Adversarial Regularisation
	1D Convolution and Bi-LSTM Layer for SST
	Pairwise Word Interaction Model (PWIM)
	Further Pre-training with Efficient Fine-tuning

	Experiments
	Data
	Evaluation method
	Experimentation Details
	Results

	Analysis
	Conclusion
	Appendix
	Appendix

