
BERT-icus, Transform and Ensemble!
Stanford CS224N Default Project

Maya Czeneszew
Dept. of Computer Science

Stanford University
mayacz22@stanford.edu

Helen He
Dept. of Computer Science

Stanford University
helenahe@stanford.edu

Sidra Nadeem
Dept. of Computer Science

Stanford University
sidranem@stanford.edu

Abstract

"Transformers, more than meets the eye!" Transformers have revolutionized natural
language processing (NLP) with models like BERT, but they still face challenges
such as overfitting and lacking nuanced language understanding. We explore these
challenges using minBERT over three human language tasks: sentiment analysis,
paraphrase detection, and textual similarity tasks. Techniques such as smoothness-
inducing adversarial regularization and cosine-similarity fine-tuning augment min-
BERT’s performance. Ensembling methods further enhance results, with weighted
"expert" averaging yielding optimal outcomes. Our findings contribute to NLP
discourse, emphasizing domain expertise and task-specific fine-tuning for effective
model optimization, while proposing future avenues for exploration. Through these
efforts, we advance the understanding and application of NLP techniques, paving
the way for more robust language models to roll out.

1 KEY INFORMATION

Mentor: Annabelle Wang | External Collaborators: None | Sharing Project: No

2 INTRODUCTION

"Transformers, more than meets the eye. Transformers, attention in disguise." These iconic words,
evoking memories of a popular cartoon theme, resonate deeply in the realm of artificial intelligence.
In recent years, the field of natural language processing (NLP) has experienced a surge in innovation,
propelled by seminal works such as "Attention Is All You Need" by Vaswani et al. This groundbreak-
ing research introduced transformers, revolutionizing machine understanding of human language and
giving rise to models like BERT, Transformer-XL, and of course, the household name GPT.

Our project focuses on exploring the capabilities of one such model: miniature BERT (minBERT),
aiming to address fundamental NLP tasks including sentence sentiment classification, paraphrase
detection, and semantic textual similarity. Despite their remarkable potential, transformers have
inherent limitations, such as susceptibility to overfitting and overlooking nuances in language.

To overcome these challenges and enhance minBERT’s performance, we employ advanced ML
techniques, including smoothness-inducing adversarial regularization, cosine-similarity fine-tuning,
and ensemble methods. By integrating these techniques, our goal is to improve minBERT’s robustness,
flexibility, and adaptability, enabling it to capture a broader range of linguistic patterns. Through this
effort, we aim to contribute to the ongoing evolution of NLP models, advancing natural language
understanding systems.

3 RELATED WORK: BERT, A RENAISSANCE MODEL

BERT multitask learning in particular can leverage information from multiple related NLP tasks
to improve the performance of the overall model. Similar to how humans transfer their knowledge

Stanford CS224N Natural Language Processing with Deep Learning

from one task to another, we can use the same principle when training models for downstream NLP
tasks (Zhang and Yang, 2017). Prior research has also shown that multitasking fine tuning before
single-task fine tuning improves BERT’s accuracy on the development set (Mienye and Sun, 2020).

However, aggressive fine-tuning can lead to overfitting with downstream tasks (Kuhn and Johnson,
2013). We therefore focus on reducing the chance for overfitting and increasing flexibility when
tested with new data to improve our minBERT model with the following approaches.

Our first goal is to reduce overfitting across all three tasks in order for our model to generalize better
to shared learning tasks. This is achieved through implementing two versions of the smoothness-
inducing adversarial regularization technique, the first being directly from the work of Jiang et al.,
and the second being a hybrid approach that incorporates parameter perturbation techniques.

Our second goal is to explore the synergies and interplay between fine-tuning single tasks and multiple
tasks, given the distinct advantages of each approach. For this, we experiment with single-task fine-
tuning, multitask learning, and ensemble learning.

In particular, we’re intrigued by the potential of ensemble learning. Often shadowed by its more
popular counterpart multitask learning, ensemble learning involves training several different models
separately, and then combining model predictions through various statistical methods. Ensemble
learning has been shown to improve results on unbalanced datasets, prompting us to use this approach
due to the significantly greater size of the Quora Dataset (Mienye and Sun, 2022). Another benefit of
ensemble learning is more diversified knowledge, since the technique incorporates a range of base
learners that allow for a more varied error pattern and a more robust aggregate prediction (Bian et al.,
2020).

4 APPROACH

4.1 The Basic minBERT

First, we implemented a pre-trained minBERT model as per the comprehensive project guidelines
(Devlin et al., 2018). Features include a multiheaded self-attention module and an Adam optimizer.

To mitigate common mishaps such as overfitting to training data and overlooking subtle linguistic
nuances, we have added the following methods specifically aimed at enhancing model flexibility and
generalization.

4.2 Smoothness-Inducing Adversarial Regularization

4.2.1 Version 1: Smoothness Inducing Adversarial Regularization (SIAR)

Just like how a rough sheet of metal must be sanded to achieve a smooth texture, models must also
be smoothed to become more flexible than rigid. This original technique, introduced by Jiang et al.,
encourages the model to learn smoother decision boundaries by penalizing sharp transitions between
classes. By promoting smoother boundaries, the model becomes more robust to noise and outliers,
reducing overfitting and enhancing generalization. Jiang’s approach is defined below in further detail
as: Given a model f(·; θ) and a dataset of n points {(xi, yi)}ni=1, where xi represents the input data
embeddings and yi are the corresponding labels, the optimization problem for fine-tuning the model
is formulated as:

min
θ

L(θ) + λsRs(θ) (1)

where L(θ) is the loss function calculated as:

L(θ) = 1

n

n∑
i=1

l(f(xi; θ), yi) (2)

and Rs(θ) is the smoothness-inducing regularizer:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

l(f(x̃i; θ), f(xi; θ)) (3)

2

4.2.2 Version 2: Adversarial Training with Parameter Perturbation

In contrast to perturbing the input space, the adversarial training with parameter perturbation approach
applies perturbations directly to the model’s parameters. This method can be expressed as:

θ̃ = θ + ϵ · sign(∇θL(θ)) (4)

where θ̃ denotes the perturbed model parameters. The regular loss L(θ) remains the same as in
Equation 2. The adversarial loss is then computed with the perturbed parameters, leading to a
combined loss:

Lcombined = L(θ) + λsL(θ̃) (5)
This combined loss is then used to update the model parameters during training.

4.3 Cosine-Similarity Fine-Tuning

The cosine-similarity fine-tuning extension was applied to the similarity task. Demonstrated by
Reimers and Gurevych in their work with Siamese BERT models, fine-tuning with cosine similarity
adjusts model parameters based on embedding similarity (Reimers and Gurevych, 2019). Unlike
conventional similarity measurements such as Euclidean and edit distance, which use geometric
distance, cosine distance captures directional similarity. This makes it less sensitive to variations
in vector length while still being able to capture semantic similarity (Xia et al., 2015). In our
experiments, we compare cosine similarity with two types of losses: cosine embedding loss vs. mean
squared error loss.

4.3.1 Version 1: With Cosine Embedding Loss

Let x1 and x2 be a pair of contextualized embeddings outputted from the BERT model. Let y be the
list of true labels assigned to a batch of sentence pairs, indicating their similarity; in our approach,
labels have been scaled to be either -1 or 1 based on the cosine embedding loss requirements. The
cosine embedding loss then computes:

loss(x, y) =
{
1− cos(x1, x2), if y = 1

max(0, cos(x1, x2)− margin, if y = −1
(6)

where cos(x1, x2) represents the cosine similarity between the two embeddings.

4.3.2 Version 2: With Mean Squared Error (MSE) Loss

Let x1 and x2 be a pair of contextualized embeddings outputted from the BERT model. Let y be the
list of true labels assigned to a batch of sentence pairs, indicating their similarity. In our approach,
labels have been scaled to be between 0 and 1. The cosine similarity between the two embeddings is:

logits =
x1 · x2

max(∥x1∥2 · ∥x2∥2 , ϵ)
(7)

Mean squared error is then used to compute the loss between the cosine similarity logits v and the
true y labels.

ℓ(v, y) = L = [ℓ1 . . . ℓN]
T
, ℓn = (vn − yn)

2 (8)

where N is the batch size.

4.4 Ensembling

Ensembling is a crucial enhancement in our project (and not unlike the transformation of robots
into the powerful gestalt Bruticus in the Transformers cartoons!). In the realm of NLP transformers,
ensembling combines predictions from multiple base models to generate a final, often superior
prediction (Fort et al., 2020). By utilizing diverse models trained on different data and tasks,
ensembling reduces overfitting and relying on a single model’s predictions. We prioritize post-fine-
tuning-based ensembling techniques due to hardware limitations, categorizing them into unweighted
and weighted methods. This distinction highlights approaches that assign equal significance to each
model, vs. those that prioritize predictions from an "expert model."

3

Table 1: Ensembling methods used in experiment

Unweighted Methods Weighted Methods

Average and Majority Voting: Basic ensem-
bling method. Aggregates outputs by averaging
scores (for scoring tasks) or conducting a major-
ity vote (for classification tasks).

Weighted Average and Majority Voting: Sim-
ilar to its unweighted counterpart, but assigns
some pre-specified weight to the "expert model"
and divides the remaining weight among the
"non-expert" models, amplifying the influence
of the former.

Bootstrapping: Enhances ensembled predic-
tions through resampling. Each model generates
predictions, and multiple random samples with
replacement are used to train a base model, cap-
turing data variability.

Stacking: Combines predictions from multi-
ple base models using a linear regression meta-
model. Weights are implicitly determined during
training, ensuring an unbiased approach to en-
sembling.

5 EXPERIMENTS

5.1 Experiment Group 1: Cosine Similarity with MSE Loss vs. with Cosine Embedding Loss

We investigated MSE Loss and Cosine Embedding Loss to discover the best version to pair with
the cosine similarity extension for textual similarity tasks (the STS dataset). We also experimented
with different scaling methods for the input logits and labels. We compare both extensions to our
baseline model’s performance (multitask fine tuning without extensions) on the SST dataset. All
training experiments were performed by training and evaluating solely on the SST dataset. All test
experiments were run by evaluating the model’s performance on all three tasks.

5.2 Experiment Group 2: Single-task Fine-tuning with Cosine Similarity for Paraphrase Task

In this experiment, we performed single-task fine-tuning with the cosine similarity extension for the
Quora dataset. Our goal was to determine whether the base multitask fine-tuned model’s performance
on paraphrase detection tasks was better or worse than our extension.

5.3 Experiment Group 3: Adversarial Loss Experiments with Smoothing vs. with Perturbing

For these experiments, we focused on the sentiment classification task and semantic textual similarity
task datasets to evaluate the efficacy of adversarial loss functions. For the sentiment classification
and semantic textual similarity task, we conducted a series of experiments contrasting the effects
of the smoothness inducing adversarial regularization against direct perturbations. This allowed us
to observe the impact of adversarial noise on model performance, with the intent to enhance model
robustness and generalization across the different tasks.

5.4 Experiment Group 4: Ensembling

Taking the best-performing models from Experiment Groups 1 and 2, we designated one model as
the “expert model” for each task: sentiment analysis, parahphrasing, and simliarity correlation. We
then ran the four ensembling methods specified in our Approaches section on these models on all
three tasks and the full dataset.

5.5 Data

Our models are trained on 3 datasets. For the sentiment analysis task, we used the Stanford Sentiment
Treebank (SST), the Quora dataset, and the SemEval Benchmark (STS) dataset. The SST dataset
consists of 11,855 movie sentence reviews for the sentiment classification task, and the Quora data
consists of 400,000 question pairs with labels that are true if the sentences are paraphrases of one
another for the paraphrase task. Finally, the SemEval STS Benchmark dataset facilitated the fine-
tuning of semantic similarity assessment through 8,628 sentence pairs scored from 0 to 5, split into

4

6,041 for training, 864 for development, and 1,726 for testing. The model was pre-trained on the SST
database as well as the CFIMDB dataset which contained 2,434 polarized movie reviews.

5.6 Evaluation Methods

Our evaluation methods followed the specifications of the CS224N default project. For the sentiment
analysis and paraphrase detection task with categorical outcomes, we used accuracy. For the semantic
textual similarity task, which involves a range of similarity scores, we used Pearson correlation as our
evaluation method.

5.7 Experimental Details

Unless otherwise specified, all models were trained with a learning rate of 1 · 10−5 and a batch
size of 16. For the smoothness-inducing adversarial regularization term, we tested with values:
ϵ = {0.1, 1 · 10−5, 1 · 10−5}, λ = {0.1, 1, 5}, and η = 1 · 10−5.

5.8 Results

Below are two tables reporting our results on the dev and test datasets. The great disparities between
the two indicate that overfitting may have occurred when running on the test set when using the
weighted average and majority voting (with an expert weight of 1.00 and 0.5). While ensembling
methods are used to help improve model generalization and reduce overfitting, using the expert model
with the 1.00 and 0.5 weighting strategies could have led to a high level of specialization to the dev
data. Consequently, while the dev set performance suggested an improved capability to handle the
variability within that dataset, this did not translate well to the test set, where a different or more
diverse set of examples and linguistic features might have been encountered.

Table 2: Consolidated dev results of all experimental techniques

Method Sentiment Acc Paraphrase Acc Similarity Corr

Pretrain Default 0.301 0.653 -0.094
Baseline Multitask Finetuned BERT (No Extensions) 0.342 0.738 0.365
Fine-tune SST + Cosine Embedding Loss 0.208 0.375 0.427
Fine-tune SST + MSE Loss + Labels Scaled to [0, 1] 0.167 0.478 0.855
Finetune Paraphrase + Cosine Similarity * 0.632 *
Param. Pert. ϵ = 10−4 0.505 0.313
SIAR ϵ = 10−4 0.501 * 0.328
Param. Pert. ϵ = 10−1 0.507 * 0.337
Avg + Majority Vote 0.098 0.656 0.800
Bootstrapping 0.231 0.549 -0.019
Weighted Avg + Majority Vote (Expert Weight: 0.50) 0.380 0.700 0.839
Weighted Avg + Majority Vote (Expert Weight: 0.75) 0.471 0.745 0.855
Weighted Avg + Majority Vote (Expert Weight: 1.00) 0.514 0.745 0.855
Stacking 0.514 0.577 0.473

Note: * indicates that the task was not tested for this method.

Table 3: Consolidated test results of weighted average and majority vote ensembling

Method SST Accuracy Paraphrase Acc. STS Corr.

Weighted Avg + Majority Vote (Expert Weight 1.00) 0.210 0.749 -0.013
Weighted Avg + Majority Vote (Expert Weight 0.50) 0.225 0.708 0.051

5

6 ANALYSES OF DEV EXPERIMENTS

6.1 Experiment Group 1: Cosine Similarity with MSE Loss vs. with Cosine Embedding Loss

Our experiments display a significant improvement in the dev accuracy for similarity tasks when
utilizing cosine similarity and mean squared error loss as opposed to cosine similarity and cosine
embedding loss.

Per its requirements, cosine embedding loss takes in binary target values, where -1 and 1 represent no
similarity and perfect similarity respectively. However, the paraphrase task evaluates similarity on a
continuous scale between the ranges 0 to 5. In order to fit the requirements of cosine embedding loss,
we mapped the true labels from the STS dataset to be either -1 or 1. Table 2 shows our implementation
of cosine embedding loss improved on the baseline score from 0.231 to 0.427 for the semantic textual
similarity correlation.

While the performance has improved, we believed that the binary target values required by Cosine
Embedding Loss removes the complexity required to properly evaluate the similarity between
embeddings. As a result, we experimented with Mean Squared Error Loss. Since Mean Squared
Error (MSE) calculates the squared difference between predicted and target values without heavily
restricting either to a specific range, it’s more suitable for the continuous values outputted by the
cosine similarity extension. However, to minimize incorrect classifications, we need to ensure both
predicted and target values are on the same scale. We explored various scaling methods:

Table 4: Dev accuracy results for scaling methods with MSE loss

Method Sentiment Acc Paraphrase Acc STS Correlation
No Scaling 0.440 0.640 0.323

logits * 5 0.185 0.577 0.815
5 * sigmoid(logits) 0.186 0.511 0.670
(logits + 1) * 2.5 0.211 0.453 0.502
Scaled labels to [-1, 1] 0.214 0.493 0.430
Scaled labels to [0, 1] 0.167 0.478 0.855

From Table 4, we see that scaling the labels to be between [0, 1] outperforms other scaling methods
for the STS dataset by a large margin. This subverted our initial expectations as we believed scaling
labels to be between [-1, 1] (to match the range of the logits) would outperform other methods. Upon
further analysis, we see that the cosine similarity assigns a 1 for total similarity, -1 for opposite, and
0 for unrelated or orthogonal. Scaling labels to be between 0 and 1 influences the model to give
dissimilarity scores of 0 instead of -1; this is the most accurate approach as we technically do not
measure “opposite” sentences and orthogonality is the closest we will get to dissimilarity between a
pair.

6.2 Experiment Group 2: Analysis of Multi-tasking for Paraphrase Tasks

From 2, we see that the model that was single-tasked fine-tuned on the Paraphrase (Quora) dev dataset
received an accuracy of 0.632. On the other hand, the baseline multitask fine-tuned BERT model
(with no extensions applied) performed much better, receiving an accuracy of 0.738. Therefore,
we decided to use the baseline multitask fine-tuned BERT model in our ensemble infrastructure
specifically for paraphrase tasks. A possible explanation for this disparity may be that single-task
fine-tuning with the extension lowered the model’s ability to analyze a broader range of paraphrase
tasks where deeper connections between embeddings are required.

6.3 Experiment Group 3: Analysis of Adversarial Loss Approaches

6.3.1 Performance Evaluation

Interestingly, the parameter perturbation adversarial approach with ϵ = 10−1 shows the highest
accuracy on the SST task with a dev accuracy of 0.507. This indicates that a higher perturbation level
may facilitate better generalization for sentiment classification, possibly due to a greater exploration

6

Figure 1: Adversarial loss approaches for SST and STS tasks

of the embedding space. This is followed by the parameter perturbation with ϵ = 10−4 with a dev
accuracy of 0.505, followed by the SIAR adaptation with a dev accuracy 0.501.

In a more qualitative perspective, we speculate that the increased performance from the addition
of adversarial methods for the SST task compared to the baseline could be due to the potentially
beneficial effects of the perturbations: higher perturbations could lead the model to prioritize more
semantically meaningful features rather than potentially misleading surface-level cues and noise.
Thus, these perturbations could help the model focus on developing a deeper, more contextual
understanding for the SST task. Conversely, for the STS task, due to its objective of measuring the
semantic similarity between sentence pairs, adversarial perturbations, especially those with higher
epsilon scores, could obscure the meaning of one or both of the sentences, thus leading to a lower
semantic overlap detected by the model, potentially leading to a reduced ability to accurately predict
similarity scores between sentences.

6.4 Experiment Group 4: Ensembling

Our analysis of ensemble methods across all three grammar tasks reveals some intriguing insights.
First, the unweighted ensembling methods (average plus majority vote and bootstrapping) exhibit
mixed performance, as seen in Table 2. Though averaging and voting gained 0.435 in performance
on similarity correlation from the baseline, this boost is counteracted by drops of -0.244 and 0.082 in
sentiment and paraphrase accuracy, respectively. Bootstrapping also shows less-than-stellar results,
underperforming across all three tasks: -0.111, -0.189, and –0.384 for the sentiment, paraphrase,
and similarity tasks, respectively. In fact, the models’ worst performances were near zero: 0.098
sentiment accuracy for the average and majority vote technique, and a -0.019 similarity correlation
for bootstrapping.

On the other hand, weighted ensemble methods, most likely thanks to the incorporation of expert
opinions, offer more promising results. The weighted average plus majority voting technique
demonstrates notable improvements, especially in the sentiment and similarity tasks. Specifically,
sentiment accuracy shows an increase of approximately 0.172 when the sentiment task is done entirely
by the “expert model” (weighed at 1.00, other two models weighed at 0.00), reaching 0.514 accuracy
compared to the baseline’s 0.342. Similarly, similarity correlation sees a substantial improvement
of over double the baseline score, with an expert weight of 1.00, jumping from 0.365 to 0.855.
This suggests that considering the expertise of individual models significantly enhances ensemble
performance. Also, stacking, though its performance spikes aren’t as high as weighted averaging and

7

voting, still shows considerable improvement: +0.172, +0.108 for sentiment accuracy and similarity
correlation above the baseline.

7 ERROR ANALYSIS ON TEST DATASET

In this section, we analyze the contrast between the dev set performance and the test set outcomes
of our ensemble methods (see Table 2 vs. Table 3). When employing the weighted average and
majority vote with an expert weight of 1.00, the model exhibited robust performance on the dev set
but faltered significantly on the test set. This pattern suggests potential overfitting; the ensemble
method’s strong dev set results did not generalize to the test set. A heavy reliance on the "expert
model" likely narrowed the ensemble’s predictive capabilities, constraining it to the idiosyncrasies of
the dev set and impairing its performance on the diverse examples of the test set.

Our hypothesis is that the ensemble’s overfitting was caused by an overemphasis on the dev
set characteristics, reinforced by the "expert model" weight of 1.00, leading to a finely tuned
performance on the dev dataset at the expense of broader applicability. The incremental improvements
observed with an expert weight of 0.50 on the SST and STS tasks—despite overall lower scores
lend credence to our assumption. This shift in weights, while still not optimal, reduced the over-
specialization to the dev data, thereby confirming our hypothesis and underscoring the need for a
balanced approach that better captures the variance across datasets.

Additionally, our approach to fine-tuning could have contributed to the error. We applied single-task
fine-tuning for SST and STS, yet multitask fine-tuning for paraphrase detection. Furthermore, our
final results from the test dataset 3 show how well the paraphrase dataset did compared to the other
two. This proves that, contrary to our initial assumptions, our fine-tuning approach for the ensembling
techniques did not promote generalization to unseen tasks nor facilitate transfer learning between
different task types, highlighting the need for a re-evaluation of fine-tuning strategies in pursuit of
more generalizable models.

8 CONCLUSION

Our study explored various fine-tuning techniques and architectures to optimize BERT’s performance
across sentiment analysis, paraphrase identification, and textual similarity tasks. Notably, we delved
into single-task vs. multitask fine-tuning, and we also identified optimal ensemble techniques for
single-task fine-tuned models.

For single-task vs. multitask fine-tuning, we observed that cosine similarity provided significant
improvements in textual similarity tasks, regardless of fine-tuning approach used. While adversarial
loss does enhance sentiment accuracy, its impact on similarity tasks was inconclusive, suggesting a
nuanced balance between robustness and semantic fidelity.

While there were significant discrepancies between the dev and test results, our research still under-
scored potential benefits of ensembling fine-tuned models to enhance performance. Our experiments
revealed that despite the overarching issue of overfitting, the weighted average plus majority voting
approach, particularly when heavily weighting the "expert model," did show promise under controlled
conditions. This finding suggests that while the methodology did not perform as expected universally,
there remains value in exploring domain-specific expertise within model ensembling, albeit with a
more nuanced approach to avoid overfitting and ensure better generalizability.

Our findings not only contribute to the discourse on effective fine-tuning and ensemble methods in
natural language processing but also, it prompts reflection on the dynamic between task specialization
and combination. Looking ahead, avenues for future exploration include extensions of adversarial loss
functions, such as the Bregman proximal point approximation, to further enhance model robustness
and generalization. Additionally, we propose exploring multitask fine-tuning with weighted averaging
of development results, aiming to optimize model performance across multiple tasks simultaneously.

In conclusion, our research highlights the significance of domain expertise and task-specific fine-
tuning for optimizing minBERT’s performance. By leveraging diverse fine-tuning strategies and
ensemble techniques, we advance our understanding of effective approaches in NLP, exploring
opportunities for more robust and flexible language models.

8

References
Bian, Yijun Wang, Yijun Yao, Yaqiang Chen, Huanhuan. (2019). Ensemble Pruning Based

on Objection Maximization With a General Distributed Framework. IEEE Transactions on
Neural Networks and Learning Systems. PP. 1-9. 10.1109/TNNLS.2019.2945116.

Devlin, Jacob et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. North American Chapter of the Association for Computational Linguistics
(2019).

Fort, Stanislav, et al. Deep Ensembles: A Loss Landscape Perspective. arXiv preprint
arXiv:1912.02757.

Mienye, Domor Sun, Yanxia. (2022). A Survey of Ensemble Learning: Concepts, Algorithms,
Applications, and Prospects. IEEE Access. PP. 1-1. 10.1109/ACCESS.2022.3207287.

Kuhn, Max, and Kjell Johnson. (2018). Applied predictive modeling. Springer.

Reimers, Nils, and Iryna Gurevych. Sentence-BERT: Sentence Embeddings Using Siamese
BERT-Networks. Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing.

Vaswani, Ashish, et al. Attention Is All You Need. Advances in Neural Information Processing
Systems.

Xia, Peipei Zhang, Li Li, Fanzhang. (2015). Learning Similarity with Cosine Similarity
Ensemble. Information Sciences. 307. 10.1016/j.ins.2015.02.024.

Zhang, Yu Yang, Qiang. (2018). An overview of multi-task learning. National Science Review.
5. 30-43. 10.1093/nsr/nwx105.

9

	Key Information
	Introduction
	Related Work: BERT, a Renaissance Model
	Approach
	The Basic minBERT
	Smoothness-Inducing Adversarial Regularization
	Version 1: Smoothness Inducing Adversarial Regularization (SIAR)
	Version 2: Adversarial Training with Parameter Perturbation

	Cosine-Similarity Fine-Tuning
	Version 1: With Cosine Embedding Loss
	Version 2: With Mean Squared Error (MSE) Loss

	Ensembling

	Experiments
	Experiment Group 1: Cosine Similarity with MSE Loss vs. with Cosine Embedding Loss
	Experiment Group 2: Single-task Fine-tuning with Cosine Similarity for Paraphrase Task
	Experiment Group 3: Adversarial Loss Experiments with Smoothing vs. with Perturbing
	Experiment Group 4: Ensembling
	Data
	Evaluation Methods
	Experimental Details
	Results

	Analyses of Dev Experiments
	Experiment Group 1: Cosine Similarity with MSE Loss vs. with Cosine Embedding Loss
	Experiment Group 2: Analysis of Multi-tasking for Paraphrase Tasks
	Experiment Group 3: Analysis of Adversarial Loss Approaches
	Performance Evaluation

	Experiment Group 4: Ensembling

	Error Analysis on Test Dataset
	Conclusion

