
Three Headed Mastery: minBERT as a Jack of All
Trades in Multi-Task NLP

Stanford CS224N Default Project

Valerie Fanelle1, Rafael Perez Martinez2, and Ifdita Hasan Orney3
Graduate School of Business1, Dept. of Electrical Engineering2, Dept. of Computer Science3

Stanford University
{vfanelle, rafapm, ifdi1101}@stanford.edu

Mentor: Nelson Liu No External Collaborators No shared project

Abstract

The Bidirectional Encoder Representations from Transformers (BERT) model,
introduced by Devlin et al. (2019), is a transformer-based model renowned for its
remarkable performance across a variety of natural language processing (NLP)
tasks, including sentiment analysis, paraphrase detection, and Semantic Textual
Similarity. This groundbreaking model set new benchmarks in NLP upon its release
in 2018. Building on this foundational work, we delve into minBERT, a “smaller”
variant of the original BERT model. Our objective is to experiment with various
approaches to enhance the performance of the minBERT model without being hin-
dered by expensive computational demands. We combine various approaches that
include parallel training, more sophisticated optimizers (e.g., PyTorch’s AdamW
and Google Brain’s Lion), and advanced architectures to enhance accuracy and
efficiency in sentence-level tasks. This strategy also involves fine-tuning critical
hyperparameters and implementing methods like dropout and early stopping to pre-
vent overfitting and ensure robust generalization. Lastly, we evaluate our minBERT
model using three datasets: Stanford Sentiment Treebank, Quora Question Pairs,
and Semantic Text Similarity. Our best-performing model obtains an overall score
of 0.731 and 0.734 in the dev and test leaderboards, respectively.

1 Introduction

Bidirectional Encoder Representations from Transformers (BERT) by Devlin et al. (2019) is a
transformer-based model that has performed remarkedly well in various natural language processing
(NLP) tasks such as sentiment analysis, paraphrase detection, and Semantic Textual Similarity. This
model advanced the state-of-the-art (SOTA) in the field when it was released in 2018. In the original
BERT paper by Devlin et al. (2019), two model sizes were presented: BERTbase and BERTlarge,
containing 110 million and 340 million parameters, respectively. We use minBERT, a simplified
and minimalist version of the original BERT framework. This approach enables us to identify
the bottlenecks inherent in the original BERT model’s architecture, allowing for a more focused
exploration of potential improvements without the limitations imposed by extensive computational
needs that a larger model would require.

This paper summarizes a series of extensions to a baseline minBERT model to optimize its per-
formance across multiple sentence-level tasks, more specifically, sentiment analysis, paraphrase
detection, and semantic textual similarity. We began by implementing multi-task training with
sequential training. However, we faced challenges with catastrophic forgetting during training since
one of the datasets we considered was disproportionately large compared to the other two. To partially
mitigate this issue, we shifted to parallel training, i.e., where smaller datasets are iterated multiple
times within one epoch of the most extensive dataset to ensure that an equal number of batches are
produced across all three datasets.

Stanford CS224N Natural Language Processing with Deep Learning

We further refined our model’s architecture by adopting more advanced optimizers such as PyTorch’s
(Foundation, 2024) implementation of Adam (Kingma and Ba, 2017) with decoupled Weight decay
(Loshchilov and Hutter, 2017), which is commonly referred to as AdamW, and Google Brain’s
Lion (EvoLved Sign Momentum, Chen et al. (2023)). These optimizers showcased better training
efficiency and model convergence, which led to an overall score improvement. Once we achieved
satisfactory preliminary results above the baseline model, we considered various multi-headed
model architectures, which we implemented along with our parallel training approach and advanced
optimizers. This allowed us to obtain our highest overall dev and test scores of 0.731 and 0.734,
respectively.

2 Related Work

After the introduction of the BERT model, there has been a resurgence of more advanced BERT
model variants such as RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2020), and ELECTRA
(Clark et al., 2020), which target specific NLP tasks through a variety of multi-task learning (MTL)
approaches. Some of these methods include simple additional neural network layers on top of the pre-
trained model as well as adding more complex and sophisticated architectural designs to the model
to excel at tasks such as sentiment analysis, paraphrase detection, and Semantic Textual Similarity.
For example, we took inspiration from other advanced BERT variants, such as Sentence-BERT
(Reimers and Gurevych, 2019) and TwinBERT (Lu et al., 2020), which introduced more specialized
architectures targeting tasks such as semantic textual similarity by utilizing sophisticated approaches
like embedding comparisons using cosine similarity and mean pooling strategies.

We initially faced challenges due to uneven dataset sizes for the different tasks we considered.
Previous works have addressed this issue by using a variety of techniques to overcome different
dataset sizes during pre-training and fine-tuning. As such, we explored a parallel training approach,
which was inspired by the work of Stickland and Murray (2019), where they modified the multi-task
training routine to sample the smaller datasets more times during one epoch.

In addition to these changes to the model’s architecture, we considered other more advanced optimiz-
ers besides the one we implemented from scratch during the milestone (AdamW) (Kingma and Ba,
2017). We first considered PyTorch’s version of AdamW, which resulted in a better performance.
However, in recent years, progress has been made toward developing optimizers that outperform
Adam, especially in the context of language modeling and computer vision. Some of these optimizers
include Google Brain’s Lion optimizer and Stanford’s Sophia (Scalable Stochastic Second-order
Optimizer for Language Model Pre-training, Liu et al. (2024)). We primarily investigated Lion, as
previous works with this optimizer have yielded promising results in various ML tasks, including
language modeling (Chen et al., 2023).

3 Approach

3.1 Baseline model

We begin by implementing a baseline version of minBERT to benchmark our extension’s improve-
ments. Below, we describe in detail each of the changes we implemented for the three classification
tasks. For sentiment analysis, the goal is to predict the sentiment of given sentences across five
classes (from negative to positive). We start by computing the sentence embedding by passing the
respective inputs to a forward function. Specifically, the forward function processes batches of
sentences using the BERT model, taking input_ids and attention_mask as inputs. It then extracts the
[CLS] token’s embeddings, which represent the entire sentence. These embeddings are then used as
foundational representations for the various task-specific analyses in sentiment analysis and the other
two tasks. After generating the sentence embeddings, we then apply a linear layer which processes
the embeddings to produce five logits per sentence, representing the model’s confidence in each of
the sentiment classes. This is then followed by a dropout layer which we apply to these embeddings
to mitigate overfitting. Lastly, we used the logits to classify the sentiment of each sentence.

In the context of paraphrase detection, we are comparing a pair of sentences to see if they have the
same meaning. We start by computing the embeddings of each sentence using the forward function.
We then calculate the absolute difference between the embeddings of the pair of sentences to quantify
if there are any discrepancies. A linear layer is applied to produce a logit that indicates the likelihood

2

of the sentences having similar meanings (i.e., they are paraphrases), followed by dropout to prevent
overfitting. For the semantic textual similarity task, our goal is to assess the similarity between
pairs of sentences. We do this by calculating the embeddings for each sentence in the pair and then
finding the absolute difference between these embeddings (a similar approach taken in paraphrase
detection). We apply a linear layer, which processes these embeddings to ultimately produce a logit
that represents the similarity between the sentences, followed by dropout.

Once the baseline minBERT model has been established, we initiate an initial training procedure,
which will be refined and modified in subsequent extensions. In our initial approach, we implemented
from scratch the AdamW optimizer (Kingma and Ba, 2017). This optimizer particularly enhances the
model’s training efficiency by dynamically adapting the learning rates, incorporating momentum to
dampen oscillations, and accelerating the optimizer in the desired direction.

Since our goal is to enhance the minBERT model’s performance across three downstream tasks, we
first employ a basic multi-task learning framework. In this particular framework, we simultaneously
consider the loss of all three tasks, i.e., the total loss is calculated L by aggregating the losses for
each task. This is represented mathematically as:

L = LSA + LPD + LSTS, (1)

where LSA is the cross-entropy loss, LPD is the binary cross-entropy loss, and LSTS is the mean-
squared error loss for the Sentiment Analysis (SA), Paraphrase Detection (PD), and Semantic textual
similarity (STS) tasks, respectively. We particularly considered a “sequential” training approach
where we shift between tasks during each epoch. This is showcased in the diagram of Fig. 1(a).

3.2 Parallel Multi-Task Training Routine

Given the difference in dataset sizes for each different task, we initially ran into catastrophic forgetting,
which is defined in Luo et al. (2023) as “a phenomenon that occurs in machine learning when a model
forgets previously learned information as it learns new information.” This was particularly the case in
our baseline model since the dataset used to fine-tune the paraphrase detection task was relatively
larger than the dataset of the other two tasks. As such, we implemented a parallel multi-task training
routine. In this routine, we iterated multiple times through the smaller datasets within one epoch of
the most extensive dataset to ensure that an equal number of batches were produced across all three
datasets. This is showcased in Fig. 1(b), along with the sequential training routine.

3.3 Task Specific Heads

While our baseline model considered three simple task-specific heads, the performance for the three
tasks was unsatisfactory. As such, we implemented several iterations of task-specific heads to improve
the performance until we reached an overall score higher than 0.7 in the dev and test leaderboards.

For the sentiment analysis task, we started with a basic architecture, leveraging embeddings produced
by BERT. Our initial approach involved integrating a 1D convolutional layer after the BERT embed-
dings, anticipating that the convolutions would capture local context that is helpful for sentiment
analysis. The Conv1D layer was meant to process the sequence of the embeddings outputted by
BERT, hoping to enhance feature extraction specific to the sentiment task. We chose this architecture
because we believed a convolutional approach could add value by emphasizing important n-gram
features within the sentences (Saba and Rosales, 2023). However, the convolutional model did not
deliver the improvements we were seeking. So, we pivoted to a simpler architecture inspired by
SBERT, which is known for its effectiveness in semantic textual similarity tasks. SBERT’s approach
to creating sentence embeddings through mean pooling of BERT’s output provided a less complex
and more computationally efficient pathway to sentence representation. We used this strategy within
the forward function to form sentence embeddings for all task-specific heads, which included the
sentiment analysis head. Forgoing the convolutional layers in favor of simplicity and mean pooling
improved our model’s performance. With this change, we achieved a balance between model com-
plexity and computational efficiency, ultimately surpassing the 0.7 threshold on the development and
test leaderboards.

Paraphrase detection had the challenge of understanding the semantic equivalence between sentences.
Our baseline model passed BERT’s embeddings through a simple linear layer, but this approach was
not enough to consistently identify paraphrased text pairs. To enhance our paraphrase detection head,

3

Sentiment Analysis

Paraphrase Detection

Semantic Textual Similarity

Epoch 0

Parallel Training Routine

Sentiment Analysis

Paraphrase Detection

Semantic Textual Similarity

Epoch n

Sentiment
Analysis

Paraphrase
Detect.

Semantic
Textual

Similarity

Epoch 0

…

Sequential Training Routine(a)

(b)

Sentiment
Analysis

Paraphrase
Detect.

Semantic
Textual

Similarity

Epoch n

…

Figure 1: (a) Sequential and (b) parallel training routines for the minBERT model.

our model followed a layered approach, beginning with BERT to process sentence pairs, followed by
an advanced head structure for paraphrase detection. These embeddings were passed through a head
consisting of the following layers:

1. Linear Transformation: A dense layer reduced the high-dimensional BERT embeddings to
a smaller feature set. This step aimed to condense the essential information for paraphrase
detection into a more compact representation.

2. Activation Function: A ReLU activation added non-linearity to the model, helping to
capture complex patterns in the data.

3. Dropout: To combat overfitting, a dropout layer was included, which randomly set a portion
of the input units to zero during training, forcing the model to learn more robust features.

4. Final Linear Layer: Another dense layer transformed the features to the final logit.
5. Sigmoid Activation: Convert the output to a probability between 0 and 1, given this is a

binary classification task.

This initial paraphrase detection head did not perform as well as anticipated. Despite its theoretical
robustness, the added layers and parameters may have led to the model overfitting the training data
or being too rigid to generalize well to unseen data. Therefore, we pivoted to a more simplified
approach. We calculated the absolute difference between BERT’s sentence embeddings to emphasize
the discrepancies between sentence pairs. This strategy aimed to directly capture the degree of
variation between the two sentences, working under the assumption that true paraphrases would
exhibit minimal differences in their BERT representations.

The task-specific head was thus reduced to a single intermediate linear layer that mapped the BERT
embeddings to a lower-dimensional space conducive to binary classification. This was followed by a
GELU activation function, known for its smooth non-linearity and efficient training performance.
The output of this activation function was then fed into a final linear layer that compacted the features
down to a single logit representing the probability of the sentence pair being a paraphrase. The design
was completed with a sigmoid activation applied to the logit, outputting a probability score between
0 and 1. By concentrating on the essential components of the paraphrase detection task—namely,
the relative difference between embeddings and their transformation into a probability score—this
final architecture demonstrated improved performance metrics and generalization capabilities on our
development and test datasets.

4

Linear

Sentence

minBERT

Embedding

Linear
Hidden Size → 256

GELU

(a) Sentiment Analysis

256 → # of Sent. Classes
Linear
256 → 1

Sentence 1 Sentence 2

minBERT

Embeddings
abs(Emb1 – Emb2)

Linear
Hidden Size → 256

GELU

(b) Paraphrase Detection

Sentence 1 Sentence 2

minBERT

Embedding 1 Embedding 2

Linear
Hidden → Hidden

Vector 1 Vector 2

Cosine Similarity

Scale by 2.5·(1+x)

(c) Semantic Textual Similarity

[-1, 1]

[0, 5]

Figure 2: Model architecture of the proposed minBERT model for (a) semantic analysis, (b) para-
phrase detection, and (c) semantic textual similarity tasks.

For the semantic text similarity task, we processed the sentence pairs through BERT to get their
embeddings and then passed them into a two-step linear transformation process, punctuated with
ReLU activation and dropout for non-linearity and regularization. The linear layers were intended
to compress and then expand the embeddings, hypothesizing that this would allow the model to
reconstruct and emphasize features important in semantic similarity:

1. A first linear layer to compress the embeddings from a higher to a lower dimension.
2. A ReLU activation function to introduce non-linearity.
3. A dropout layer to prevent overfitting.
4. A second linear layer to map the features back to the original embedding dimension.

After the transformation, we applied a sigmoid function and scaled the result to the range of [0, 5],
aiming to map the cosine similarities to the labeled similarity scores as per the STS task requirements.

However, this initial approach did not yield the results we were aiming for. The transformation steps
seemed to distort rather than clarify the semantic signals required for accurate similarity scoring. The
performance metrics indicated that the complexity of this architecture might have led to overfitting,
and the model failed to generalize well on unseen data.

Thus, we shifted our strategy toward a more effective technique inspired by SBERT (Sentence-
BERT), which leveraged the mean pooled embeddings from BERT followed by a cosine similarity
computation for the STS task. By adopting mean pooling, we could maintain the richness of BERT’s
contextual embeddings while still capturing the essence of sentence similarity. The cosine similarity
provided a straightforward yet powerful measure that correlated well with human judgment on the
task, as demonstrated by SBERT’s success.

Our final implementation demonstrated significant improvement in our STS performance. It showed
that a well-chosen, straightforward method could outperform more complex ones, affirming the
importance of model selection based on task-specific characteristics and empirical results. Following
this, the final implementation of our model, illustrated in Figure 2, represents the culmination of
an iterative development and empirical validation process. This process underscores its robustness,
achieving the highest accuracy on both development and test leaderboards.

3.4 Advanced Optimizers

Optimizers are fundamental for training neural networks, particularly language models like BERT.
Over the past decade, several optimization algorithms have emerged, but only two have become the

5

gold standards among many others: AdamW and Adafactor. Both of these optimizers are frequently
used by ML practitioners across various domains, ranging from language to vision to multimodal
systems. In our baseline model, we have implemented the AdamW optimizer from scratch. However,
a more sophisticated implementation of AdamW is available within PyTorch (Foundation, 2024).

As part of one of our extensions, we shifted towards using PyTorch’s version of the AdamW optimizer
once we had achieved satisfactory preliminary results beyond the baseline model. We particularly
experimented with a combination of different optimizers along with various extensions.

In addition, we also tested Lion, an optimizer proposed by the Google Brain team (Chen et al., 2023).
Unlike AdamW, this optimizer stands out for its memory efficiency as it only keeps track of the
momentum. In particular, Lion updates each parameter with a uniform magnitude determined through
sign operation. One of the most significant advantages of this optimizer is that it can achieve similar
performance to AdamW with a 2x speedup (i.e., a faster runtime). It is also more straightforward
to compare AdamW to Lion as they share almost identical hyperparameters, with the exception of
ϵ, which is not included in Lion. The primary difference between these two optimizers is that the
learning rate for Lion is usually 3 to 10 times smaller than that for AdamW, which also impacts the
weight decay (i.e., it will be 3 to 10 times larger to maintain the same α · λ product). In addition, the
default β2 factor is 0.99 instead of 0.999 (Adam’s default β2 value).

We also implemented Surgical Fine-tuning (Lee et al., 2023), a specialized optimization technique.
We froze the first few layers of the pre-trained model from experiment 7 and fine-tuned it using the
three datasets along with batch size 8 to reduce overfitting.

4 Experiments

4.1 Data and Evaluation Metrics

Experiments were conducted on three datasets: the Stanford Sentiment Treebank (Socher et al.,
2013), binary paraphrase detection on Quora Question Pairs (QQP, Quora (2017)), and regression on
Semantic Text Similarity (STS, Agirre et al. (2013)). Details and evaluation metrics of these datasets
are described below:

Stanford Sentiment Treebank: Used for sentiment analysis by classifying movie reviews into five
different categories: negative, somewhat negative, neutral, somewhat positive, or positive. It was
parsed using the Stanford parser and was annotated by three human judges. It consists of 11,855
single sentences from movie reviews, and the splits include training (8,544 examples), development
(1,101 examples), and test (2,210 examples) sets. Here, accuracy is used as the evaluation metric
(Socher et al., 2013).

Quora Question Pairs: Used for paraphrase detection to identify whether question pairs are para-
phrases of one another. It contains a total of 400,000 question pairs. The dataset is divided into
training (141,506 examples), development (20,215 examples), and test (40,431 examples) sets. Model
performance is evaluated by accuracy (Quora, 2017).

Semantic Text Similarity: Used to measure sentence pair similarity on a 0 to 5 scale. A total of
8,628 different sentence pairs were split into training (6,041 examples), development (864 examples),
and test (1,726 examples) sets. The Pearson correlation coefficient is used as the evaluation metric
(Agirre et al., 2013).

4.2 Experimental Details

For our experiments, we shared some common settings across the board. For our training procedures,
we ran ten epochs utilizing either pre-training or fine-tuning procedures. A learning rate (α) of 1e-3
was chosen for pre-training, while an α = 1e-5 was selected for fine-tuning unless stated otherwise.
We also used a hidden-layer dropout rate of 0.3. For batch size, we considered various sizes, but for
the most part, we used either a batch size of 40 or 64 for pre-training and a batch size of 8 or 35 for
fine-tuning (depending on memory constraints). These values are detailed in the results subsection
(4.3)). We trained our models in either the Nvidia T4, V100, or A100 GPUs (depending on their
availability in Google Colab).

6

For the optimizer settings, we used the following hyperparameters for AdamW: β1 = 0.9, β2 = 0.999,
ϵ = 1e-6, and λ = 0. For Lion, we used slightly different values: α = 1e-4 (for pre-training) or 1e-6
(for fine-tuning), β1 = 0.9, β2 = 0.99, and λ = 0. The recommended values for the learning rates of
the Lion optimizer were 3-10x lower. We tried both extremes and noticed that we obtained superior
performance by using a 10x lower value. We also tried testing a variety of hyperparameter values for
hidden-layer dropout rate, learning rate, λ, but we noticed that either we obtained a similar score or it
got worse, so we decided to stick to these values due to limited computational resources.

4.3 Results

Table 1: Detailed Performance Metrics by Experiment on Development Dataset

Experiment Overall Accuracy SA PD STS Batch Size
Baseline Heads and Sequential Training

1 Sequential (pre-trained) 0.465 0.292 0.624 -0.043 40
2 Sequential (fine-tuned) 0.534 0.459 0.625 0.037 8

Baseline Heads and Parallel Training
3 Parallel training (pre-trained) 0.548 0.351 0.625 0.337 40
4 Parallel training (fine-tuned) 0.602 0.500 0.625 0.363 8

Task-Specific Heads, Parallel Training, and No Optimizer
5 Exp. 4 + Three Heads Are Better 0.478 0.190 0.625 0.236 40

Than One Paper Architecture
6 Exp. 4 + Sentiment-and-Paraphrase 0.684 0.515 0.841 0.393 40

Custom Heads
Additional Task-Specific Heads, Parallel Training, and Optimizer

7 Exp. 6 + STS Custom Head + AdamW 0.731 0.502 0.865 0.643 8
8 Exp. 7 + Higher α (2e-5) 0.729 0.491 0.858 0.672 8
9 Exp. 7 + Additional STS Layers 0.668 0.488 0.636 0.761 35

Advanced Optimizers
10 Exp. 6 + PyTorch’s AdamW 0.699 0.526 0.841 0.457 8
11 Exp. 6 + Lion 0.643 0.477 0.778 0.350 64
12 Exp. 9 + Lion 0.658 0.488 0.722 0.525 64
13 Exp. 7 + Weighted loss function 0.714 0.513 0.862 0.530 8
14 Exp. 7 + Surgical Fine-tuning 0.725 0.481 0.862 0.660 8

Table 2: Results from Highest-Performing Model Architecture on Test Dataset

Overall Accuracy SA PD STS Batch Size Learning Rate Optimizer
0.734 0.520 0.865 0.637 8 1e-5 PyTorch’s AdamW

We conducted the above 14 experiments and obtained these results, with Experiment #7 being the
highest-performing. In the following section, we will analyze these results in detail.

5 Analysis

Our results paint a story about the many levers one can pull to optimize NLP models, such as
redesigning the model’s architecture to support task-specific heads, various training strategies, and
optimization techniques.

Initially, our baseline models with sequential training performed poorly, demonstrating a need for a
more robust training routine. The introduction of parallel training marked a significant improvement
in overall accuracy, particularly benefitting the Semantic Text Similarity (STS) task, showcasing
parallel training’s ability to address catastrophic forgetting effectively.

Task-specific modifications to our task heads further propelled our models’ capabilities. For para-
phrase detection, the transition to calculating absolute differences between sentence embeddings
resulted in superior accuracy over the baseline approach. For Semantic Text Similarity, using simple

7

strategies rooted in NLP theory, such as mean pooling and calculating cosine similarity between sen-
tence pairs, was most effective. For sentiment, using simple layers instead of complex convolutional
layers allowed for more robust sentiment detection capabilities as the model became better attuned to
the global sentiment representations of the text.

Optimization techniques also played an important role. The switch to AdamW, particularly PyTorch’s
implementation, marked a noticeable improvement in our overall accuracy score, which could be
attributed to better handling of weight decay or more nuanced learning rate adjustments within the
optimizer’s algorithm. The implementation of surgical fine-tuning further enhanced our model’s
performance by reducing overfitting, allowing for more generalized and robust results. While effective
in reducing overfitting for STS, it resulted in suboptimal performance for the other two tasks. We
believe the selective updating of the model layers and parameters might have inadvertently constrained
the model’s ability to generalize for the other two tasks. The Lion optimizer, while not leading to
any top scores, allowed for a balance of performance and efficiency which was beneficial in testing
various heads, particularly at larger batch sizes. Notably, the addition of task-specific layers and a
deliberate combination of optimization methods led to our highest accuracy scores. This iterative
process, marked by empirical testing and methodical adjustments, was critical in identifying the most
effective models.

However, our journey was not without its challenges. Complex task-specific heads did not deliver
the expected benefits, the weighted loss function did not enhance performance as hypothesized, and
the Lion optimizer, despite its promise of efficiency, fell short in comparison to AdamW. Our team
switched from the custom project due to a lack of computing resources to run LLaMA 2 and OpenAI’s
Whisper. As a result, we had little time to apply smart regularization techniques and leverage tools
like Optuna for hyperparameter optimization. Again, limited computing resources on the default
project also limited our ability to test and experiment quickly with additional optimizations, such as
supervised contrastive learning and a prototypical neural network.

In conclusion, the above learnings from our experiments highlight a clear approach to optimizing
NLP models: a balanced blend of simplicity in model architecture, task-specific design, strategic
training approaches, and judicious selection of optimizers. This journey exemplifies the nuanced
interplay between various parts of model development, ultimately leading to a suite of models that
excel in their respective NLP tasks while maintaining a synergy that boosts overall performance.

6 Conclusion

Through our exploration of performance enhancements to minBERT, we discovered the great impact
model architecture, training routines, and optimizer choice could have on sentence-level NLP
tasks. We found that parallel training significantly mitigated catastrophic forgetting issues present in
sequential training, resulting in a boost in model accuracy, particularly for Semantic Textual Similarity.
Simplified task-specific heads tailored to each NLP task—absolute difference measurements for
paraphrase detection and SBERT-inspired techniques for STS—proved superior to our more complex
initial approaches. However, we faced limitations, including underutilization of smart regularization
techniques and hyper-parameter optimization due to computing constraints, which restricted our
ability to iterate rapidly.

In reflection, our project’s achievements highlight the delicate balance required between model
complexity and task specificity. Future work could benefit from exploring utilizing ensembles to
boost task-specific performance, advanced regularization techniques, diversifying training data, and
incorporating cutting-edge optimizers to push the boundaries of model efficiency and accuracy.
Despite the challenges, our work provides a roadmap for improving NLP models and underscores the
iterative nature of machine learning research.

7 Team Contributions

Valerie: Implemented Baseline model, Task-specific heads, and custom heads and ran experiments
Rafael: Implemented Baseline model, fine-tuned using advanced optimizers like PyTorch AdamW,
Lion and ran experiments
Ifdita: Implemented the Baseline model, Surgical fine-tuning and ran experiments.

8

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM

2013 shared task: Semantic Textual Similarity. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the
Shared Task: Semantic Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for
Computational Linguistics.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. 2023. Symbolic Discovery of
Optimization Algorithms.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. ELECTRA:
Pre-training Text Encoders as Discriminators Rather Than Generators.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding.

The PyTorch Foundation. 2024. torch.optim.AdamW - PyTorch documentation. Accessed: 2024-03-
14.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations.

Yoonho Lee, Annie S. Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea
Finn. 2023. Surgical fine-tuning improves adaptation to distribution shifts.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. 2024. Sophia: A Scalable Stochastic
Second-order Optimizer for Language Model Pre-training.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT
Pretraining Approach.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled Weight Decay Regularization. arXiv preprint
arXiv:1711.05101.

Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. TwinBERT: Distilling Knowledge to Twin-Structured
BERT Models for Efficient Retrieval.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. 2023. An Empirical Study
of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning.

Quora. 2017. First quora dataset release: Question pairs. https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs. Accessed: 02-28-2024.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks.

Esteban Cambronero Saba and Jesus Meza Rosales. 2023. Three Heads Are Better Than One.
Stanford CS224N Default Project.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. BERT and PALs: Projected Attention Layers for
Efficient Adaptation in Multi-Task Learning.

9

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
http://arxiv.org/abs/2302.06675
http://arxiv.org/abs/2302.06675
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/2210.11466
http://arxiv.org/abs/2305.14342
http://arxiv.org/abs/2305.14342
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2002.06275
http://arxiv.org/abs/2002.06275
http://arxiv.org/abs/2308.08747
http://arxiv.org/abs/2308.08747
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671

	Introduction
	Related Work
	Approach
	Baseline model
	Parallel Multi-Task Training Routine
	Task Specific Heads
	Advanced Optimizers

	Experiments
	Data and Evaluation Metrics
	Experimental Details
	Results

	Analysis
	Conclusion
	Team Contributions

