
ExtraBERT: Applying BERT to Multiple Downstream
Language Tasks
Stanford CS224N Default Project

Rishi Dange
Department of Computer Science

Stanford University
rdange@stanford.edu

Isaac Gorelik
Department of Computer Science

Stanford University
gorelik@stanford.edu

Abstract

In this project, we implement the classic BERT architecture and demonstrate its
applicability across three distinct natural language processing tasks: sentiment
analysis, paraphrase detection, and semantic textual similarity analysis. We begin
with an architecture fine-tuned just for sentiment analysis, and proceed via a
set of strategic iterations to ultimately arrive at a multitask learning model that
could theoretically be generalized to even more tasks. We find that incorporating
additional fine-tuning data (specifically, the Stanford Natural Language Inference
corpus) and thoughtfully increasing the complexity of our downstream predictor
functions provide the most positive impact to our model’s performance and ability
to generalize on unseen data. We also implement a version of gradient projection
in order to mitigate gradient conflicts among the separate tasks; our results show
improvement on paraphrase detection and semantic textual similarity analysis but
not on sentiment analysis. Nevertheless, this project demonstrates the applicability
and adaptability of the BERT framework that and sets the stage for more complex
work to come.

1 Key Information
• Mentor: Arvind Mahankali
• Team Contributions: Work was split evenly, as both partners worked on the design,

implementation, and writeup. For project extensions, Isaac focused on SNLI, and Rishi
focused on gradient surgery.

2 Introduction

The overarching goal of this work is to implement and enhance the Bidirectional Encoder Represen-
tations from Transformers (BERT) model, leveraging its multi-head self-attention and transformer
layers as outlined by (Devlin et al., 2018) in the original BERT paper. Our focus is on exploring the
efficacy of the BERT model across three fundamental Natural Language Processing (NLP) tasks:
sentiment analysis, paraphrase detection, and semantic textual similarity analysis. Moreover, the
project aims to innovate upon the baseline BERT model through various strategies to augment its
performance on these downstream tasks, thereby pushing the boundaries of what is achievable with
current deep learning techniques in NLP.

More specifically, the three canonical NLP tasks that we target are:

1. Sentiment Analysis: Determining the sentiment expressed in a piece of text, categorizing it
as positive, negative, or neutral.

2. Paraphrase Detection: Identifying if two texts convey the same meaning, an essential task
for ensuring the uniqueness of textual content and understanding linguistic variations.

Stanford CS224N Natural Language Processing with Deep Learning

3. Semantic Textual Similarity Analysis: Assessing the degree of semantic similarity between
two sentences, which is crucial for tasks such as information retrieval, question answering,
and summarization.

For our basic training, development, and testing data, we utilize the Stanford Sentiment Treebank
(SST) dataset along with the CFIMDB movie review dataset for the purpose of sentiment analysis,
a Quora labeled paraphrase dataset for the purpose of paraphrase detection, and the SemEval STS
Benchmark dataset for the purpose of semantic similarity analysis.

The foundation of our project is the BERT model, where the key neural methods in the original
architecture are bidirectional encoders, multi-head self-attention, and transformer layers. From
there, we proceed in an iterative improvement process toward our overarching multitasking goal
that highlights the benefits and drawbacks of each strategy along the way, using the performance of
our basic BERT model on sentiment analysis as a baseline for model performance. These model
improvement strategies include adding complexity (in terms of algorithms, features, and layers) to
the downstream task prediction functions, incorporating additional training data for the fine-tuning of
the semantic similarity task (specifically, we use the Stanford Natural Language Inference developed
by Bowman et al. (2015) as a means of better connecting pairs of sentences during the fine-tuning
process), and implementing multi-task learning with gradient projection to avoid gradient conflicts.

For sentiment analysis and paraphrase detection, we use accuracy (correct classifications as a fraction
of total classifications) to evaluate our model’s performance. For semantic textual similarity analysis,
we use the Pearson correlation of the true similarity values against the predicted similarity values, as
used by Agirre et al. (2013) in the original SemEval paper. We find that our overall performance on
the three tasks increases with the additional prediction function complexity, and we also find that the
incorporation of the SNLI dataset generates a considerable improvement for our semantic similarity
task (critically, it also does not appear to hinder the other tasks’ performances). However, our gradient
projection implementation hinders performance on the sentiment analysis task. Nevertheless, we
continue to believe in its potential and as future work would spend time adjusting our loss functions
prior to performing gradient projections in order to attempt to avoid this hindrance.

3 Related Work

Our project aims to build and expand upon the original Bidirectional Encoder Representations
from Transformers (BERT) model as presented by (Devlin et al., 2018) to build a model capable
of multi-tasking in the three downstream tasks of sentiment analysis, paraphrase detection, and
similarity detection. As such, we will first introduce BERT and then discuss the relevant research for
approaching the downstream multi-tasking:

Recently, Natural Language Processing (NLP) has experienced a paradigm shift with the advent of
models like BERT, which rely on the self-attention mechanism inherent in the transformer architecture
circumvent the need for large, sequential sequence to sequence models such as RNNs and LSTMs.
The default BERT model used was pre-training on a large corpus of text using two tasks—masked
language modeling and next sentence prediction tasks to learn contextual representations of words
and sentences. We relied on this baseline BERT model, and incorporated additional output layers built
on top of pooled sentence outputs to perform a wide array of NLP tasks, leveraging its bidirectional
training to understand the full context of a word based on its surroundings.

Gradient-based optimization techniques have been crucial in fine-tuning deep learning models. The
concept of gradient surgery, as explored by (Bi et al., 2022), involves modifying gradient vectors
to enhance the training of multi-task models, and has demonstrated that careful management of
gradient updates can lead to improved generalizability across tasks. By integrating gradient projection
methods, we aim to mitigate the adverse effects of competing task gradients, a common challenge in
multi-task learning scenarios.

Feature engineering plays a pivotal role in the effectiveness of NLP models. For paraphrase detection
and semantic textual similarity analysis, our project employs cosine similarity and L1 distance
measures between sentence vectors, as used by (Reimers and Gurevych, 2019) in a siamese appraoch,
where input sentences were passed through two identical BERT models. This mirrors our approach,
where we feed inpt sentences through the same BERT model for pairwise tasks such as paraphrase
detection and similarity assessment. By fusing these similarity metrics with BERT’s deep contextual-

2

ized representations, we intend to create a more nuanced and precise model capable of discerning
intricate linguistic relationships.

In harnessing these advancements, our project seeks to address existing limitations in the application
of BERT to NLP tasks. Through exploring gradient techniques and specialized neural architecture
geared towards three distinct donwnstream tasks, we make a compelling case for the adaptability and
growth potential of using transformer based models like BERT in a multi-faceted NLP landscape.

4 Approach

We begin our iterative approach toward a successful multitask classifier with our basic BERT model
that is trained to perform sentiment classification on the Stanford Sentiment Treebank (SST) dataset.
Toward our goal of producing rich sentence embeddings that can perform all three of our desired
downstream tasks, we proceed with the following phases.

Phase 1. Linear predictors using sentiment training

Our baseline BERT model is trained solely on the sentiment classification task using the corresponding
dataset. In that light, our very first pass at predicting sentiment, detecting paraphrases, and analysis
semantic similarity comes in the form of a simple downstream linear layer for each task that transforms
the input dimensionality into the desired output dimension (and into the desired task output range).

Phase 2. Basic multitasking during training

In order to allow our model to perform well at all three tasks, we want to incorporate all three tasks in
our training process. In that light, for each epoch, we first proceed through all training examples for
the sentiment task, calling loss.backward() each time. We then proceed through the paraphrasing
examples, finally ending with the semantic textual similarity examples. In this manner, our model
learns its parameters based on all three tasks rather than just sentiment analysis.

Phase 3. More complex predictor functions

In the previous phases, our downstream predictor functions simply take input sentence embeddings
and use linear layers to produce output values. We now enrich these functions with additional layers
and features.

For our sentiment predictor, we utilize a dropout layer followed by a fully-connected layer in order
to aid in the process of generalizing to unseen data. Then, we use a batch normalization layer to
add stability to the learning process, which is followed by a nonlinearity (ReLU). After, we use four
different versions of the same layers along with a final dropout layer before passing the resulting
values to our output linear layer.

For our paraphrase predictor, we begin with the input sentence embeddings for the two (batches of)
sentences. To enhance our model’s generalizability and prediction strength, we apply a dropout and a
linear layer on those embeddings before computing their cosine similarity. As features, we take the
two original batches, the element-wise absolute difference between the two original batches (Reimers
and Gurevych, 2019), and the modified embedding cosine similarity scaled so that it is between
−9 and 1 (experimentally derived during our hyperparameter tuning process in order to make the
paraphrase threshold sufficiently stringent). Following a dropout layer, a fully-connected layer, and a
nonlinearity (ReLU), we can finally utilize our output linear layer.

Lastly, for our semantic similarity predictor, we (as with paraphrase detection) begin with the
input sentence pair embeddings and apply a dropout and a linear layer on those embeddings before
computing their cosine similarity. As features, we take the two original batches, the element-wise
absolute difference between the two original batches (Reimers and Gurevych, 2019), and the element-
wise absolute value of the cosine similarity between the modified emeddings. We take the absolute
value for each element in the tensor because two opposite sentences (a cosine similarity of −1)
should pertain to the same topic more than two orthogonal sentences. Following a dropout layer, a
fully-connected layer, and a nonlinearity (ReLU), we can finally utilize our output linear layer (after
which we use a sigmoid function and scale to achieve our desired output range).

Phase 4. Additional SNLI data for fine-tuning

3

In this phase, our goal is to leverage extra data sources during the training process to fine-tune
the model, thereby enhancing its ability to generalize to unseen data. We specifically use the
Stanford Natural Language Inference corpus developed by Bowman et al. (2015) as a means of
better connecting pairs of sentences during the fine-tuning process. The dataset consists of pairs of
sentences with labels “entailment,” “contradiction,” and “neutral.” We transform this dataset and
its labels into a corresponding dataset applicable to our semantic textual similarity analysis task,
selecting the semantic similarity labels based on our manual inspection of the corpus as well as the
reults of our hyperparameter tuning process. During the fine-tuning process, we intend for this corpus
to provide important information for training and parameter adjustment.

Phase 5. Interleaved batches across tasks

As defined in Phase 2, our basic multitasking approach works with our three tasks one at a time. To
enhance our multitasking so that the tasks are learned concurrently, we define an overall loss function
during training

LTOT = Lsentiment + Lparaphrase + Lsimilarity (1)
that represents the total loss across all three tasks. During each epoch, the batches of examples across
tasks are interleaved so that parameter updates are made based on this new total loss function, hence
incorporating all three tasks rather than solely sentiment analysis. In the case of unequal batch sizes,
once a particular task has run out of its examples, only the remaining tasks continue providing their
examples for training.

Phase 6. Gradient-projected multitasking

In order to further enhance the abilities of this multi-task learning strategy, we follow the 2022
MTRec work to employ a modified version of the Gradient Surgery technique (Bi et al., 2022) that,
in order to deal with gradient conflicts, generally projects the gradient of a particular task gi onto the
normal plane of the conflicting gradient gj using the equation

gi = gi −
(gj · gi)

||gj ||2
· gj . (2)

Specifically, we define sentiment analysis as our “main” task and define paraphrase detection and
semantic textual similarity analysis as our “auxiliary” tasks. For a given auxiliary task gradient
gaux ∈ {gparaphrase, gsimilarity}, we project the gradient gaux onto the normal plane of gmain = gsentiment
if and only if they conflict (i.e., their dot product is negative). If the gradients do not conflict, we
leave the auxiliary gradient unchanged. Our overall gradient used for parameter updates is then

gall =
gmain + gproj

paraphrase + gproj
similarity

3
, (3)

where gproj
paraphrase and gproj

similarity represent the (potentially) projected auxiliary gradients.

5 Experiments

5.1 Data

We utilize the following datasets for training, development, and testing.

1. Task: Sentiment Analysis
Stanford Sentiment Treebank (SST) Dataset: This dataset consists of sentences extracted
from movie reviews for the purpose of sentiment analysis. There are 8,544 training examples,
1,101 examples in the dev set, and 2,210 examples in the heldout test set.
CFIMBD Dataset: This dataset consists of extremely polar movie reviews. This dataset
contains 1,701 training examples, 245 examples in the dev set, and 488 heldout test examples.

2. Task: Paraphrase Detection
Quora Dataset: A collection of question pairs from the Quora platform, where each pair is
labeled as being a paraphrase (similar meaning) or not. This dataset will primarily support
the paraphrase detection task. There are 141,506 training examples, 20,215 examples in the
dev set, and 40,431 examples in the heldout test set.

4

3. Task: Semantic Textual Similarity Analysis
SemEval STS Benchmark Dataset: A standard dataset for evaluating semantic textual
similarity, consisting of sentence pairs annotated with similarity scores. It facilitates the
training and evaluation of models on their ability to discern semantic similarities between
sentences.

5.2 Evaluation method

Sentiment analysis and paraphrase detection are inherently classification tasks (paraphrase detection
being a binary classification task). Consequently, for sentiment analysis and paraphrase detection, we
utilize accuracy to evaluate our model’s performance:

correct classifications
total classifications

For semantic textual similarity, we utilize the Pearson correlation of the true similarity values against
the predicted similarity values as an indicator of our model’s performance, as used by Agirre et al.
(2013) in the original SemEval paper. This metric is defined as:

ρY,Ŷ =
cov(Y, Ŷ)

σY σŶ.

5.3 Results

Overall Score Sentiment acc. Paraphrase acc. STS corr.
P2: Pretr. (10 epochs, 1e-3 LR) 0.438 0.406 0.383 -0.009
P2: Finetun. (10 epochs, 1e-5 LR) 0.511 0.527 0.490 0.030
P3: Finetun. (7 epochs, 5e-6 LR) 0.740 0.484 0.864 0.741
P4: Finetun. (7 epochs, 1e-5 LR) 0.749 0.492 0.860 0.789
P6: Finetun. (7 epochs, 1e-5 LR) 0.577 0.174 0.740 0.632

The above table displays our results on selected phases’ pretraining and finetuning runs (where
pretraining refers to runs in which the BERT parameters are frozen, and finetuning refers to runs in
which those parameters are learned along with the model layer parameters), specifically displaying
scores on the development set. Note that there is no row for Phase 5 in the table because we
did not complete a full run through of the phase given that it was an intermediary phase for the
upcoming Phase 6. Instead, given our time constraint, we sped up our development process by
training on a smaller subset of the training data and received development scores also on a subset
of the development set, so those runs are not directly comparable to the ones shown in the table.
Ultimately, our most accurate model (from Phase 4) achieved a sentiment analysis accuracy of 0.510,
paraphrase accuracy of 0.859, and Pearson correlation score (for the similarity task) of 0.752 on the
heldout test set.

6 Analysis

On the development set, our model achieved a sentiment accuracy of 0.492, a paraphrase detection
accuracy of 0.860, and a SST Pearson correlation of 0.789. We investigated the predictions for each
of these datasets, and observed the following interesting patterns with the model’s behavior:

6.1 Similarity Analysis

When choosing sentence pairs at random, our model’s predictions were quite strong, and were largely
within 0.2 of the true similarity score. Overall, our model performed the weakest for sentence pairs
of very high similarities (close to 5.0).

In fact, for the 865 points in the dev set, not a single prediction was above 4.3, suggesting that our
model seems to have difficulty assigning high similarity scores. Our model does not seem to have as
much difficulty on the lower edge.

5

For instance, the sentence pair "A cat opens a drawer and climbs inside," and "A cat is opening a
drawer and climbing inside," should have a similarity score of 5.0, but our model assigns a value of
4.2

6.2 Sentiment Analysis

Somewhat like the similarity predictor, our sentiment classifier seems to perform rather well for
movie reviews with “neutral” sentiment, towards the center (i.e. values of 1, 2, or 3). Interestingly
enough, we found these neutral reviews rather difficult to discern from one another — although we
did not analyse our human classification accuracies on a random batch of reviews, we believe that it
is possible that the model might even outperform us for these reviews in the mid-range. However, for
very negative reviews, our model was too optimistic, and very often failed to identify the negative
reviews as being a 0.

Some examples are:

• "When the film ended , I felt tired and drained and wanted to lie on my own deathbed for a
while ." A human reviewer should likely correctly classify this review as a resounding 0, but
our model assigned it a sentiment of 1.

• "Expect the same-old , lame-old slasher nonsense , just with different scenery." was also
incorrectly classified as 1 rather than 0.

6.3 Paraphrase Analysis

With an accuracy of 0.860, our model seemed to perform rather well for paraphrase detection, but
seemed to fall victim to a certain false positive trap. These two pairs of sentences were both classified
as paraphrases:

• What might be some reasons that there are more answers than questions on Quora? Are
there more answers than questions on Quora?

• Why is Frederiksberg not a part of Copenhagen? Is Frederiksberg not a part of Copenhagen?

It appears that our model gets tricked by situations where one sentence is a yes/no question, and
the other is asking to explain the phenomenon (using extremely similar, or even identical, language
patterns).

7 Conclusion and Future Work

This work sought to explore the efficacy of the BERT model in tackling the natural language
processing tasks of sentiment analysis, paraphrase detection, and semantic textual similarity analysis.
During our six phases of modification, we augmented our model in order to make it more suitable for
the tasks at hand and to specifically enable it to concurrently learn embeddings pertinent to the three
different tasks. Based on our results, we see the adaptability of the BERT model across a variety
of natural language processing tasks when provided with the right model setup and modifications.
Moreover, we see the importance behind presenting additional fine-tuning data and defining complex
yet generalizable predictor functions. While our results for Phase 6 were not as promising as we
would have liked on the sentiment analysis task (perhaps due to the limited complexity behind the
gradient combination mechanism), its success on the other two tasks make the gradient projection
route an intriguing path for future work.

As future work, we would be keen to work on the following aspects of our model.

1. We would like to improve the gradient-projected multitasking functionality of our model.
Specifically, we hypothesize that unnormalized loss functions across the tasks combined
with a very elementary averaging scheme may be the cause of our lacking performance for
sentiment analysis. We would be very interested in exploring this route as a means of further
improving our model.

2. We would seek to better tune the hyperparameters of our model for their respective tasks.

6

3. We would also seek to construct even stronger predictor functions for the three tasks, as
better predictors very clearly positively impacted our model’s performance.

4. We would be curious to generalize this work to a platform that would allow an end user to
multitask across a wide variety of novel tasks given a simple dataset along with labels.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. Sem 2013

shared task: Semantic textual similarity. In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task
learning over bert for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2663–2669.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

7

	Key Information
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Results

	Analysis
	Similarity Analysis
	Sentiment Analysis
	Paraphrase Analysis

	Conclusion and Future Work

