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Abstract

Document-level classification has long been a target task in the clinical domain;
however, there currently exists a gap in handling long conversational transcripts.
This project aims to evaluate deep learning systems’ efficacy in classifying psy-
chological symptoms from such transcripts with excessive token counts, which is
crucial for determining treatments in psychotherapy practices. We fine-tuned vari-
ous transformer architectures (BERT, RoBERTa, Longformer), as well as trained
Support Vector Machine (SVM) models with feature engineering, and performed
human annotations using transcripts of token size up to 20, 000. We found that deep
learning methods outperform both traditional machine learning method and human
baseline while boosted methods seem to have a negligible effect on enhancing
psychological symptom prediction outcomes.

1 Introduction

Identifying and classifying psychological symptoms serve as the important first step in psychological
interventions. As the prevalence of mental illness continues to rise, there is a corresponding increase
in publications focusing on the detection of mental health issues using machine learning algorithms.
However, within the domain of psychology, natural language processing (NLP) techniques have
predominantly relied on traditional machine learning methods. According to a study conducted by
Zhang et al. (2022), 59% of the surveyed mental illness detection papers employed a machine learning
pipeline involving Support Vector Machines (SVM), decision trees, AdaBoost, logistic regression,
and naive Bayes. Despite the existence of NLP deep learning research in the field, they often utilize
short or low-quality web text corpora (e.g., Reddit posts, and tweets) for training purposes (Ji et al.,
2021; Salmi et al., 2022). Whether such web text data can address the complexity and subjectivity
of mental health diagnostics raises questions about the practical value of proposed ML systems.
Moreover, contemporary data consortia in mental health-related contexts frequently involve lengthy
clinical textual data, such as electronic health records and conversational transcripts. Effectively
harnessing these datasets presents a challenge to existing deep learning methods due to constraints on
token size during the training and fine-tuning process.

Our objective for this study is to construct domain knowledge-enriched multi-label classification
models for detecting mental health issues and compare their performances in classifying long
texts. The overarching strategy involves employing different neural methods capable of processing
unstructured English language as input and forecasting the potential psychological and mental health
concerns experienced by individuals articulating these statements. Our emphasis will be on two
prominent mental health indicators, specifically depression and anxiety, as foundational components
for model development. We constructed neural classifiers of various architectures and employed both
truncating longer documents to fit models’ maximum sequence length and sub-document splitting
combined with boosting as two approaches to harness information from our long inputs. Building off
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of this work, we aim to expand the scope with the refined model to incorporate a broader spectrum
of psychological states and transition toward a more comprehensive classification framework in the
future.

2 Related Work

Reviews of papers in the mental health domain suggest that autoencoders are often used to achieve the
classification task (Su et al., 2020). Existing literature often applies such deep learning frameworks on
shorter and more accessible social media posts and found processing longer documents challenging
(Li et al., 2022). The field of NLP has been actively seeking ways to capture dependency structures
and contextual information within a lengthy text corpus. In tasks such as document-level classification,
inputs vary from a few tokens to thousands or ten thousand, easily surpassing the popular frameworks’
limit. Recent research endeavors have focused on addressing this challenge of learning with long
text by exploring various strategies, including text segmentation and truncation, sliding window
techniques, and modifications to the training or fine-tuning framework through the incorporation of
additional layers, such as convolutional neural networks (Fiok et al., 2021; Park et al., 2022; Zheng
et al., 2023). These modifications aim to accommodate pre-trained models for effectively handling
long texts. Our objective is to bridge this gap by proposing and benchmarking technical solutions that
facilitate the efficient use of long clinical texts within the realm of psychology. Through our work,
we primarily aspire to provide insights into the efficient application of deep learning methodologies
for the described challenge, while also contributing to the development of a robust mental health
detection model that can be applied to various downstream applications, such as therapeutic chatbots.

3 Approach

Baseline SVM We utilized radial basis kernel Support Vector Machines (RBF SVMs) with feature
engineering as the traditional machine learning (ML) baseline. The feature matrix consists of
normalized stemming Bag-of-Words (BoW) and mapped features based on linguistic dictionaries,
including the average concreteness score of each sentence and the average value of eight basic
emotions and sentiments (Brysbaert et al., 2014; Mohammad and Turney, 2013).

Fine-tuning BERT, RoBERTa, Longformer We implemented a truncation approach wherein
either the first 512 or 4096 tokens per sample were utilized to fine-tune multi-label classification
tasks using BERT, RoBERTa, and Longformer architectures (Beltagy et al., 2020; Devlin et al., 2018;
Liu et al., 2019). Specifically, we chose these pre-trained models to compare with BERT, the classic
transformer-based architecture, because RoBERTa is pre-trained more progressively with a byte-level
tokenizer that potentially could capture more vocabulary for our data, whereas Longformer employs
a mixture of global attention and diluted sliding window attention that scales linearly with sequence
length, thus more suitable for long text documents. Classification head with linear, dropout, and tanh
layers are attached to the end of the hidden state to obtain logit outputs. Detailed classifier head
architectures are specified in Figure 1. The code was written using the PyTorch framework with all
pre-trained models loaded from Huggingface transformers (Paszke et al., 2019; Wolf et al., 2020).

Boosted Fine-tuning Sub-document slicing and pooling are performed on top of the truncation
models to assess if better predictions can be achieved with boosting methodology (Li et al., 2022;
Zheng et al., 2023). The procedure consists of each sample being sliced into sub-samples of 512 or
4096 tokens for fine-tuning. Classification results on sub-samples of a single example are pooled at
the end and a majority vote is performed to determine the final classification outcome for a sample.

Human Baseline To assess the ceiling performance for this particular task, we evaluated human
performance by randomly selecting 100 examples from the dataset, with subsequent annotation to
classify whether conversation participants exhibited symptoms indicative of anxiety or depression.
Given that the models were fine-tuned using psychotherapy session transcripts, their learning was
constrained to a finite set of psychiatry-specific medical knowledge imparted within conversational
contexts, such as medications and typical symptoms associated with various mental health states.
Thus, our human annotation process was designed to mirror this learning paradigm without having
strong psychiatry domain-specific knowledge to ensure comparability in performance metrics.
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Figure 1: Pipeline for fine-tuning, with sub-document slicing and pooling.

In-Context Learning in LLM Large language models (LLM) like GPT-4 family models are
capable of learning in-conversation. We constructed a mood classifier in GPT Store using labeled
transcripts as the knowledge base and GPT-API with examples, constrained the output to classes of
interest (anxiety, depression, none, or both), and assessed GPT-4’s ability to classify mental health
labels given the knowledge base samples.

4 Experiments

4.1 Data

This study utilizes the Alexander Street Press: Counseling and Psychotherapy Transcripts acquired
from the Stanford Library (McNally et al., 2014). The dataset comprises plain-text transcripts of
therapy sessions addressing a diverse array of presenting mental health issues with various therapeutic
approaches. It is curated under ethical guidelines to ensure anonymity and responsible usage.

After data acquisition, patient texts were distinguished from therapist texts within each transcript.
Non-ASCII characters were systematically eliminated, and transcripts with non-UTF encodings
were excluded from the analysis. Descriptive elements such as "chuckles" and "laughter" were
removed from the dataset. We also removed explicit mentions of the symptom word (i.e., "anxiety,"
"depression") from the transcript to avoid directly inputting classification labels during training, thus
promoting a more robust and unbiased learning process. A verification procedure was conducted on
the token size distributions for the examples using the model’s pre-trained tokenizers to ensure fair
comparison across models. This analysis revealed similar token size distributions, as illustrated in
Figure 4 in the appendix. The average token size was approximately 3,800 per sample. Additionally,
timestamps were stripped from the transcripts and cataloged separately. Metadata relevant to our
analysis, including session identifiers, issue categorization, and therapeutic symptoms, were organized
with the processed textual data into JSON format.

Following the preprocessing steps, the dataset consisted of 3,503 session records. Subsequently,
we divided the 3,503 psychotherapy sessions into an 80% training set and a 20% evaluation set
for evaluation. The training set comprises 2,802 examples, while the evaluation set comprises 701
examples. The training set was exclusively designated for fine-tuning, whereas the evaluation set was
reserved for performance assessments. Because neural network-based models usually do not overfit
the evaluation set and given that our main objective is to compare across various methods, we did not
have a test set result to report (Recht et al., 2018).

4.2 Evaluation method

In our analyses, we employed three evaluation metrics across all models: accuracy score, F1 score,
and ROC AUC score. Accuracy is defined as

number of correct predictions
total number of samples

F1 is defined as
2 · Precision × Recall

Precision + Recall
where precision = TP/(TP + FP) and recall = TP/(TP + FN). The ROC AUC score is a summary
statistic quantifying the area under the receiver operating characteristic curve, offering insights into
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the model’s discrimination ability across various threshold settings. These metrics were selected
to comprehensively assess each model’s proficiency in correctly identifying both the presence and
absence of the symptoms. F1 score and ROC AUC score are computed with different averaging
methods, including 1) globally counting the total TP, FN, FP, 2) calculating metrics for each label
and finding their weighted average by the number of true instances for each label, and 3) calculating
the metrics for each sample and finding the unweighted averages. Since the classes are imbalanced
in our data where both labels have more non-symptomatic samples than symptomatic samples, the
F1 and ROC AUC scores that weight each label using its support are more representative of the
model performance. The reported metrics are computed using the weighted averaging method. All
evaluation metrics are implemented with sklearn.metrics library (Buitinck et al., 2013).

4.3 Experimental details

We fine-tuned all models with multi-label tasks and utilized binary cross entropy loss with sigmoid
layer torch.nn.BCEWithLogitsLoss as the loss function. We used AdamW optimizer and cosine
scheduler for the learning rate with all fine-tuning processes. Other aspects of model configurations
are listed below. We tuned a range of learning rates (1e-2 to 1e-6) and training time (up until around
15 epochs) for all truncation and boosted models. Performance metrics across the training time for
the best learning rate are provided in the result section in Figure 2.

Pre-trained model Max sequence length Sub-document sample size Batch size
bert-base-uncased 512 23216 16

roberta-base 512 27607 16
allenai/longformer-base-4096 4096 5044 16∗

Table 1: Model configuration details.
∗ Trained with gradient accumulation. Batch size for boosted model is 32.

4.4 Results

We present the detailed performance of our best models below. Firstly, we observed that deep learning
approaches outperform the traditional ML approach, as evidenced by performance metrics such as
accuracy, F1 score, and AUROC. These slight improvements in these metrics are expected, as neural
networks convert words into word embeddings, enabling them to better capture word-level patterns.
Additionally, attention mechanisms allow the model to capture a richer input context compared to the
BoW methods employed in the RBF SVM models. Secondly, compared to the human baseline, our
models slightly outperform the accuracy and F1 score while the best model outperforms the human
baseline ROC AUC score by around 0.1. This performance was expected as we found it challenging
to distinguish the psychological state with conversational text when we were conducting human
baseline evaluations.

Model Learning rate Epoch Accuracy F1 AUROC
Human baseline - - 0.490 0.529 0.656

SVM (Depression)∗ - - 0.818 0.349 0.613
SVM (Anxiety)∗ - - 0.676 0.528 0.638

BERT 5e-5 5 0.503 0.508 0.694
Boosted BERT 5e-5 2 0.530 0.351 0.686

RoBERTa 1e-5 7 0.561 0.517 0.713
Boosted RoBERTa 1e-5 4 0.566 0.542 0.756

Longformer 1e-5 8 0.549 0.565 0.681
Boosted Longformer 2e-5 7 0.514 0.319 0.568

Table 2: Performance of best fine-tuned models compared to SVM and human baselines.
∗ Metrics reported on binary classification tasks for each psychological symptom.

Overall, we observed comparable or marginally diminished performance of boosting when compared
to the truncation baseline in both BERT and Longformer architectures. However, we noted a
converse trend for the RoBERTa model specifically. Notably, across all models, boosted RoBERTa
exhibited superior performance, achieving the highest scores in two out of three performance metrics.
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When compared to the model’s truncation baseline, we observed an increase in AUROC score of
approximately 0.04, alongside an increase in F1 of about 0.03. Interestingly, we did not observe
superior performance in Longformer across 3 truncation baselines, despite the fact that the average
token size for our documents is around 3800 so a portion of the documents can be consumed
completely in one input by the Longformer model.

To delve deeper into the factors influencing the degraded performance of boosted models in BERT
and Longformer, we conducted supplementary fine-tuning experiments on BERT due to its relatively
shorter training time. Our aim was to investigate whether the diminished performance stemmed from
the incorporation of more data and potentially some noise from all sections of the document. To
assess this, we randomly selected an adjacent section of 512 tokens from each sample and conducted
fine-tuning using these inputs. Additionally, in the supplementary boosted BERT experiment, we
altered the pooling mechanism such that if any sub-document was labeled as true, the entire document
was classified as true (OR construction). The results of these experiments are detailed in Figure 3.
The performances were similar across the four variants of BERT models.

Figure 2: Performance metrics over epoch for truncation and boosted models.

Figure 3: Performance metrics over epoch for BERT-based methods.

5 Analysis

Traditional ML vs. Deep Learning Our results suggest that the performance disparities between
traditional ML and deep learning approaches are not substantial, indicating that traditional ML
models with meticulous feature engineering may still achieve comparable results to large neural
networks, particularly when dealing with input texts of excessive token size in mental health. However,
the characteristics of lengthy texts potentially render the classification task challenging for neural
network-based models, as these models must infer a close-to-binary answer from a vast amount of
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information that may contain noise. Additionally, the label provided by experts may also contain
noise, especially for problems in psychology and mental health, which adds additional challenges.
Existing works suggest that noisy datasets need additional handling, such as trailing the loss function,
applying a probabilistic view, or employing some robust architecture (Song et al., 2020; Zhao and
Gomes, 2021).

Human Baseline vs. Deep Learning Establishing a comparable, non-psychiatric knowledge-
enriched human performance baseline enables us to comprehend the inherent difficulty of this task
when learning exclusively from language input. The observation that deep learning models marginally
surpass non-expert human annotations might imply that these sophisticated architectures possess the
capability to glean more information and discern patterns from the data compared to non-experts in
the context of psychological symptom classifications. However, it is essential to note that human
annotations are conducted on a subset of randomly selected samples due to labor and time constraints.
Thus, while indicative of ceiling performance, we do not treat human annotations as a strict benchmark
in this analysis.

Truncation vs. Boosting In both BERT and Longformer models, slicing the documents into
smaller chunks and aggregating prediction outcomes through majority voting did not yield the
anticipated performance improvement. For the Longformer model, we examined the distribution of
token sizes as depicted in Figure 4 and hypothesized that the pooling approach led to suboptimal
performance possibly due to conflicting information in the majority voting process. When documents
were partitioned into segments of a maximum length of 4096 tokens, they typically bifurcated into
two subdocuments, potentially resulting in an even split between positive and negative predictions,
thereby undermining the efficacy of the majority voting mechanism. Further investigation into the
BERT model involved randomly selecting contiguous sections of 512 tokens from each sample and
modifying the pooling mechanism with OR construction. These experiments yield similar results and
hint at the possibility that information is uniformly scattered throughout the transcript.

On the contrary, a boosted RoBERTa model exhibited enhancements over the baseline RoBERTa
metrics. We formulated several hypotheses to explain this phenomenon based on insights from our
inputs and token size distributions. First, RoBERTa generated the highest number of sub-samples
following document segmentation, potentially leading to the fragmentation of key information into
smaller segments compared to the procedures applied in boosted BERT and Longformer models.
Leveraging a byte-pair encoder, RoBERTa is adept at capturing misinformation arising from typos and
abbreviations with greater comprehensiveness. The combination of these two advantages may partially
account for the observed performance improvement in the boosted RoBERTa model. Nevertheless,
when rounded to two decimal points, all metrics demonstrate minimal fluctuations, suggesting that
overall, our three truncation and three boosted models exhibit comparable performance in long text
classification tasks.

Our result is consistent with previous literature by Kamran et al. (2023) and Tanzia Parvin and Hoque
(2021) on emotion classification that shows limited improvement of ensemble methods on deep neural
network classifiers. Simple ensemble method such as majority vote with deep neural networks only
helps to digest longer text without providing a significant improvement in model performance.

Evaluations While we conducted evaluation metrics using three different methods of averaging,
we decided to compare and report using the weighted F1 score and ROC AUC score, which calculate
metrics for each label and derive their weighted average based on the number of true instances for
each label. Although other averaging methods yielded higher scores in certain models, we deemed
weighted calculation to best reflect performance, as it adjusts the label-wise metric according to the
prevalence of true labels in each category. Given the imbalanced classes in our dataset, where both
labels have more than half of non-symptomatic samples, weighted F1 and ROC AUC scores offer a
more objective assessment of performance.

Moreover, we did not select the best model based on evaluation loss due to its relatively minor
fluctuation magnitude. During the fine-tuning of both truncation and pooling versions of BERT and
Longformer, we observed a slight overfitting of loss despite continuous improvement in metrics. This
observation provides another rationale for considering the pooled RoBERTa model as the optimal
choice in our experiment. We hypothesized that this counterintuitive pattern between loss and
evaluation metrics could stem from the fact that loss is a representation of logits before the sigmoid
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layer, which may fluctuate and influence the averaged loss over epochs despite consistent output
labels.

In existing research studies, fine-tuned Clinical-Longformer from Li et al. (2022), which is tailored to
long document classification tasks, achieved an F1-score of 0.484 and an AUROC score of 0.762 in
predicting acute kidney injury using electronic health records. Our boosted RoBERTa model achieved
a similar performance in our experiment. While we utilize this as a soft benchmark, our methodology
differs due to the notably longer size of our dataset. Additionally, we acknowledge the discrepancy
in data sources, with their emphasis on electronic health records contrasting with our utilization of
conversational clinical transcripts. Therefore, we remain aware of the potential transferability of the
method across varied clinical data types for classification tasks.

In-Context Learning The last piece of related experiments we conducted involved using both
OpenAI’s API interface and the GPT store to perform in-context learning. Beginning with naive
prompting, we provided two positive and two negative samples from the prompt window. In the GPT
store, we furnished examples by presenting formatted queries as a knowledge base. Both models
exhibited inconsistency in the classification result with the exact same input in a new prompt. Even
after employing a pooling strategy for 10 prompts of the same input, the overall accuracy remained
similar to a random guess. This suggests that current user-facing language models may not be capable
of this task, indicating the necessity for a more domain-focused NLP model for this specific task.

6 Conclusion

In summary, we found that fine-tuned pre-trained neural networks outperform traditional machine
learning models and naive human baseline in classifying long, conversational therapeutic transcripts
into mental state labels. Boosting through a majority vote or an OR construction does not improve
model performance significantly. Among the three neural network models, RoBERTa appears to
exhibit the best performance, likely due to its aggressive pre-training and tokenization scheme.
Longformer, which takes in longer context length, does not outperform RoBERTa as we expected,
suggesting the possibility that model input size itself is not a dominating factor in determining
performance. In boosting, percentage overlap among sub-documents is considered as a hyper-
parameter, but we observed no impact of overlap between sub-samples on model performance. We
further fine-tuned the BERT model on a random segment of adjacent 512 tokens of each document,
and the results suggest no difference compared to the truncation baseline using the first 512 tokens.
All these experiments suggest that information in a therapy session may be uniformly scattered
throughout the conversation. Lastly, we experimented with GPT-4 family models and observed that
although in-context learning allows LLM to access labeled therapy transcripts as its knowledge base
and make predictions based on such knowledge, they are highly unstable in predicting mental labels,
and their results lack reproducibility.

To further advance the findings of this study, several promising directions for future research can
be explored. Firstly, employing cutting-edge models such as Mistral with QLoRA (Dettmers et al.,
2023; Jiang et al., 2023) can enhance our understanding of the relationship between input length
and prediction performance. By utilizing these advanced architectures to construct a multi-label
classifier, we can assess whether longer inputs correlate positively with improved prediction accuracy.
This investigation holds significant promise in shedding light on the complexities inherent in mental
health classification tasks, which often challenge even human judgment. Additionally, it can elucidate
whether augmenting the model architecture alone is adequate for achieving more accurate document-
level predictions. A separate, expert human baseline can also be established for our dataset, as
suggested by a similar approach in Van Veen et al. (2024), to investigate the current performance cap
in human annotations.

Expanding our framework to encompass a broader spectrum of mental health labels presents another
compelling direction for future research. The original dataset comprises a diverse array of over
60 mental health indicators, ranging from suicidal intent and sleep disturbances to hallucinations
and mania, among others. By leveraging our existing framework, we aim to develop a more
robust, symptom-rich multi-label classification system for psychological states. Furthermore, as
psychological issues often exhibit interdependencies, incorporating a wider range of labels holds
the potential to yield superior predictive performance and deepen our understanding of the intricate
relationships between various mental health manifestations.
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A Appendix

Figure 4: Distribution of tokenized sample length for BERT, RoBERTa, Longformer.
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