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Abstract

Multimodal machine learning for deception detection is a growing field, boasting
results up to 100% classification accuracy on truthful vs. deceptive statements
(Constâncio et al., 2023). Considering the difficulty of true, generalizable deception
detection, this is suspicious. This project tested the replicability of one of these
results, Gogate et al. (2017), and closely investigated whether the result was
only possible due to methodological issues. Evidence has been found suggesting
between 23-26% accuracy boosts when poor methodological choices are made,
between a baseline and the replicated model. Though the primary source of
improper performance gains was from changes in the data split random seed, with
performance varying up to 37% among only 10 random seeds, using untrained
models (on top of word embeddings). This result suggests that the data samples are
not independent, since random, independent guessing on each sample is unlikely
to lead to performance variation this large, though this conclusion needs further
examination. If true, this would be cause for skepticism about all results involving
the Real-Life Trial Dataset (Pérez-Rosas et al., 2015), the most common dataset
used for deception detection with machine learning (Constâncio et al., 2023), since
a lack of independence is approximately equivalent to using a smaller, independent
dataset, and the dataset is already small with only 121 samples.

1 Key Information to include

• Mentor: Tathagat Verma

2 Introduction

Polygraph tests are not currently permissible as evidence in court in most US states. This is because
research has shown that their results aren’t generally reliable, and they come with technical caveats.
Due to this, courts have judged that their scientific nature may cause juries to trust them more than is
warranted, and so they are not permissible evidence ( Cavoukian and Heslegrave (1980)). On the other
hand, the past decade has seen the rise of deep learning, and subsequently, a rise in machine learning
deception detection. For instance, in Constâncio et al. (2023), 81 research papers on deception
detection using machine learning were analyzed, and they found results ranged from 51% to 100%
accuracy, with 19 works reporting above 90% accuracy.

But if these results are legitimate, why hasn’t there been as much discussion about these systems as
there has been about the polygraph? Highly performant AI deception detection systems would be
significantly change the world, and courts would be ruling on their usage as evidence in trials. But
none of this appears to be happening.

These results are suspicious for other reasons too. Truly generalizable deception detection intuitively
should be very difficult, if possible at all. Additionally, many of these results use the Real-Life Trial
Deception Detection Dataset which only consists of only 121 samples (Pérez-Rosas et al., 2015).
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And no research testing the validity and reliability of these results was found (though it may exist).
This sort of research could be significant, considering in the case of the polygraph that this type of
research has influenced several court policies.

For these reasons, this paper aims to test the validity and reliability of these deception detection
results by replicating one of these papers, specifically Gogate et al. (2017), which uses the Real-Life
Trial Deception Detection Dataset, and which appears to have several methodological flaws. In
addition to replication, methodological analyses were done to test whether improper methodological
choices can improve performance significantly in this domain. It was found that certain poor
methodological choices did improve accuracy significantly, up to 23-26% for our baseline and our
replicated model. Additionally, random seeds used for data splitting led to large differences in
untrained model performance, with accuracies between 33.33% and 70.83% across 10 random seeds
for our untrained baseline.

3 Related Work

3.1 ML Deception Detection

In Constâncio et al. (2023), a systematic review was done of the field of deception detection using
machine learning. 540 distinct articles were screened, and of those, 81 were selected according the
the requirements that the article had to: be about deception detection; use machine learning; clearly
state the used features; report performance; and involve non-invasive methods only (e.g. no MRI).
Among these papers, reported results ranged from 51% to 100% accuracy, with 19 works reporting
above 90% accuracy, and two works reporting 100% accuracy. In all cases, the task was binary
classification among two labels, deceptive or truthful, and the primary modalities were text, speech,
and video, though other modalities were also used, such as thermal, physiological, and emotional
modalities. Both unimodal and multimodal models have been used. Both traditional ML (decision
trees, random forests, etc) and deep learning approaches have been used. And several datasets have
been used, including multimodal and unimodal datasets of various sizes.

The most widely used dataset was the Real-Life Trial Deception Detection Dataset (Pérez-Rosas
et al., 2015)), with 17 papers using it or a modified version of it. This dataset is discussed more in the
Dataset section, since it’s also the dataset used for replication. Out of papers using this dataset, six
of them report above 90% accuracy or AUROC, and out of these six, one uses Adaboost, two use
a neural network, one uses combined methods, one uses multi-view learning, and one uses logistic
regression.

3.2 The Replicated Paper

Gogate et al. (2017) was one of the neural network approaches achieving above 90% accuracy on
the Real-Life Trial Dataset. This paper was chosen for replication, because it reports results for a
unimodal text-based classifier, and since the paper appears to have several methodological flaws.

According to the systematic review of deep learning papers for deception detection done in Constâncio
et al. (2023), this paper was one of the early papers working with the Real-life Trial Deception
Detection Dataset. With that context, the main contributions of the paper are:

• Introduces deep learning multimodal fusion to the problem of deception detection, utilizing
a CNN architecture;

• SOTA results for: text-only deception detection (83.78%), visual-only deception detection
(78.57%), and several combinations of modalities, including early vs. late fusion;

• First time use of audio cues (as far as authors know) for deception detection.

One major limitation of this paper is that they did not use a validation set, only a training set (70%)
and a test set (30%). This is a major flaw, since then their hyperparameters are likely tuned to the test
set, meaning the results would not generalize. Additionally, they most likely did not split the training
and test sets by speaker, meaning the same speaker’s clips could be in the training set and the test set.
It’s possible they actually did do this, but it’s not mentioned when they discuss the training/test split.
Additionally, they don’t mention using any kind of regularization, shuffling of the training data, or
fixation of random seeds, and each of these methods would be especially important to use since the
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dataset is small (121 clips). Also, they left out some training details (number of epochs, RMSProp
parameters, and batch size), making replication more difficult. Also, the authors did very little in
terms of discussing the reported results - they didn’t make claims about generalization and they didn’t
analyze the model’s failure modes.

These limitations, especially the lack of use of a validation set, make the results of this paper much
less convincing, since it seems much less likely the results generalize.

3.3 Methodological Critiques

Some prior work was found in studying methodological flaws of machine learning research, primarily
in medical contexts. For instance, Maleki et al. (2023) discusses three main methodological pitfalls,
having to do with data augmentation, data splitting, and evaluation, and measures the effect of
these pitfalls using differences in F1 score when these pitfalls are present vs. not, which is similar
to the approach taken in this paper. Additionally, Varoquaux and Cheplygina (2022) had results
suggesting that the error in evaluation of medical imaging models is often greater than the marginal
performance improvements on Kaggle Benchmarks. The importance of proper evaluation is a theme
in this research, as well as in this work.

Outside of machine learning, there is prior research which scrutinizes the validity and reliability of
polygraphs for lie detection, such as Saxe et al. (1985) and Saxe and Ben-Shakhar (1999). This area
of research has contributed to decisions by most US states to disallow polygraph results as evidence
in court (Cavoukian and Heslegrave, 1980), suggesting that research which tests the validity of lie
detection systems can have significant real-world impacts. Even so, no prior work was found that
tested the validity/reliability of AI deception detection systems, though it may exist.

4 Approach

4.1 The Model

Only the unimodal text-based model from Gogate et al. (2017) was replicated, which achieved
83.78% accuracy in the paper. The model used is a CNN over concatenated 300-dimensional GloVe
word embeddings, which can be visualized in Figure 1 (Pennington et al., 2014). Transcripts are
padded or trimmed to 100 words, and words unrecognized by GloVe were given the same embedding
as the pad token (all zeros). The architecture of the CNN is: 4 x (Conv layer, ReLU, Max pool)
followed by 2 x (Linear layer, ReLU) and then 1 x (Linear layer, softmax). The Conv layers each
had 15 filters, and window size 2, with padding=’same’. The max pools has windows size 2. And
the linear layers were (in features=1620, out features=5000), (in features=5000, out features=500),
and (in features=500, out features=2) respectively. A linear-esque baseline was used over the GloVe
embeddings, consisting of a broadcast linear layer across each word embedding, with out features=1,
followed by a linear layer with in features=100, out features=2, followed by a softmax. Essentially,
this computes the contribution of each word, then combines the contributions without non-linearities.
As in the paper, RMSprop (Equations 1 and 2) and cross-entropy loss (Equation 3) were used to train
both models.

E[g2]t = βE[g2]t−1 + (1− β)g2t (1)

θt+1 = θt −
η√

E[g2]t + ϵ
gt (2)

H(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (3)

4.2 Ablation Studies

Using both the baseline and the replicated model ("Baseline" and "GogateCNN"), the main approach
of this paper was to measure the difference in test set accuracy when individual, poor methodological
choices are made compared to when no poor methodological choices are made. The poor methodolog-
ical choices tested were: tuning hyperparameters to the test set instead the validation set; not splitting
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Figure 1: Unimodal textual CNN binary classifier from Gogate et al. (2017).

the data by speaker; reporting the best performance across 5 or 10 random seeds; not shuffling the
training data; not using regularization; making all of these poor choices, except taking the max across
random seeds; and making all of these poor choices, taking the max across 5 or 10 random seeds.
Each condition was repeated 5 times with different random seeds for data splitting, except the "all
good choices" and "all bad choices" conditions were repeated 10 times each, so the "max of 10 seeds"
could be applied.

4.3 Random Seeds

Different random seed variables were used for different sources of randomness. Random seeds
for Bayesian optimization, weight initialization, and data shuffling were fixed for all experiments.
When experiments are run with different "random seeds," the random seed that changes is always
only the random seed used for data splitting. The used random seeds are the same 5-10 seeds in all
experiments, and their derivation is described in the Data Splitting subsection below.

4.4 Hyperparameters

Most hyperparameters were fixed across all experiments, but in order to achieve performant results,
tuning was used for RMSprop parameters of learning rate, momentum, alpha, and weight decay.
Except weight decay was fixed to 0 when regularization was not used. The validation set was used
for tuning, except in the ablations involving tuning to the test set. In order to ensure that the same
amount of optimization was applied to all scenarios, automatic hyperparameter tuning was used and
redone for each ablation condition and for each random seed. In total, 2 models x (2 conditions x 10
seeds + 4 conditions x 5 seeds) = 40 separate automatic hyperparameter tuning runs were performed.
Manual hyperparameter tuning was entirely avoided, even for the hyperparameters of the automatic
tuning process itself. For all non-tuned hyperparameters, reasonable defaults were chosen before
any experiments took place and remained unchanged throughout. Ray Tune was used for automatic
tuning, specifically their Bayesian Optimization API.

4.5 Random Seed Analysis

Additionally, to examine the amount of variation coming purely from how the data is randomly split,
the untrained Baseline and the untrained GogateCNN were tested on the respective validation set for
random seeds 0 through 99. These seeds were only used for data splitting. No training or tuning was
done, and the hyperparameters chosen were the “good methodology” choices, or reasonable defaults
for the hyperparameters that were normally tuned. Due to the difficulty of finding balanced random
seeds, splitting by speaker was not done.

4.6 Data Splitting

When splitting data by speaker, the set of samples for Jodi Arias and Andrea Sneiderman were always
put in the training set, since the sets are of size 21 and 12, which would make test/val not diverse
enough. Additionally, an algorithm was developed for ensuring train/val/test each had equal number
amounts of deceptive/truthful samples when splitting the data by speaker. The algorithm sorts groups
of samples, grouped by speaker, into the different sets, making it more likely the final splits are evenly
deceptive/truthful. Then, using this algorithm to narrow the search space, random seeds were found
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which led to train/test/val always having 50%/50% deceptive/truthful samples. When splitting by
speaker was not done, the same outcome was ensured using sklearn.model_selection.train_test_split.
And in this case, the same random seeds were used as those used when splitting by speaker, to reduce
variation between conditions.

5 Experiments

5.1 Data

The dataset used are the transcripts from the Real-Life Trial Deception Detection Dataset from
Pérez-Rosas et al. (2015), consisting of 121 clips taken from court trials, labelled either deceptive or
truthful, based on the outcome of the trial, as well as evidence from police investigations. Due to
several spelling errors found, a manually cleaned version of the transcripts were used. This, along
with punctuation stripping, reduced the number of words in the dataset which GloVe did not have an
embedding for from 533 to 56, out of 1545 total unique words in the dataset.

The associated task is binary classification over the labels deceptive or truthful, given a video of a
speaker (in our case, just their transcript).

5.2 Evaluation method

The evaluation metric for the ablation experiments is the difference in accuracy between the condition
when a poor methodological choice is made, and when no poor choices are made. For the random
seed analysis, the metrics are mean accuracy, max accuracy, and min accuracy, across random seeds.

5.3 Experimental details

Several parameters were fixed for all experiments, to reasonable defaults: test size=20%, val size=20%,
eps=1e-08 (RMS prop), centered=True (RMS prop), batch size=10 (for training speed), epochs=150,
number of random steps=4 (Bayesian optimization), number of samples=20 (Bayesian optimization),
search space for learning rate=loguniform(1e-4, 1), search space for alpha=uniform(0.9, 0.999),
search space for momentum=uniform(0.1, 0.9), and search space for weight decay=uniform(1e-4,
1e-1). Additionally, for the random seed analysis, learning rate=1e-2, alpha=0.95, momentum=0.5,
and weight decay=1e-2. These valeus were chosen as the rough middle of their respective ranges.
Random seeds for weight initialization, Bayesian optimization, and data shuffling were all set to 0.
Random seeds for data splitting were [329, 723, 769, 977, 1230] when 5 were used and [329, 723,
769, 977, 1230, 1492, 1746, 2071, 2226, 2334] when 10 were used.

Tuning/training runs were done using Google Colab’s V100. Ray Tune allowed for simultaneous
utilization of the 2 provided CPUs and the GPU. All three processors were used for each sample of
Bayesian optimization, rather than splitting the processors among several samples.

5.4 Results

First, the results of replication for the Baseline and the GogateCNN are presented in Table 1, where
only good methodological choices were made. The average accuracy plus or minus standard deviation
is shown, as well as the difference from the original result. With our setup, we were unable to achieve
the original result when using proper methodology.

Model Accuracy Difference to Original
Baseline 52.08%± 15.17% −31.70%
GogateCNN (replication) 50.00%± 0.00% −33.78%
GogateCNN (original) 83.78% N/A

Table 1: Accuracy of the replication, when only good methodological choices were made, vs. the
accuracy reported in the paper, whose methodology is uncertain.

Tables 2 and 3 show the results of the ablation studies for the Baseline and the GogateCNN respectively.
Mean accuracy plus or minus standard deviation is shown, along with the difference to the respective
“good choices only” result found in Table 1.
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Bad Methodological Choice Accuracy Difference to Baseline
Hyperparam-tuning to test 66.67%± 2.64% +14.59%
Not data-splitting by speaker 50.40%± 5.43% −1.68%
Using max across 5 random seeds 75.00% +22.92%
Using max across 10 random seeds 75.00% +22.92%
Not shuffling train data 48.33%± 8.98% −3.75%
Not using regularization 56.67%± 8.58% +4.59%
All of the above (avg) 64.40%± 6.31% +12.32%
All of the above (max of 5) 76.00% +23.92%
All of the above (max of 10) 76.00% +23.92%

Table 2: Ablation study results for Baseline model.

Bad Methodological Choice Accuracy Difference to GogateCNN
(replication)

Hyperparam-tuning to test 50.00%± 0.00% 0.00%
Not data-splitting by speaker 48.80%± 1.60% −1.20%
Using max across 5 random seeds 50.00% 0.00%
Using max across 10 random seeds 50.00% 0.00%
Not shuffling train data 49.17%± 1.67% −0.83%
Not using regularization 60.00%± 12.25% +10.00%
All of the above (avg) 62.80%± 8.21% +12.80%
All of the above (max of 5) 76.00% +26.00%
All of the above (max of 10) 76.00% +26.00%

Table 3: Ablation study results for GogateCNN model.

The results of Tables 1, 2, and 3 can also be visualized in Figures 2 and 3, which show the mean
accuracy or accuracy for each condition across the random seeds. Figure 2 shows these results for the
Baseline, and Figure 3 shows them for the GogateCNN.

Figure 2: Average accuracy achieved for each seed and each condition, for the Baseline model.

Lastly, the results of the random seed analysis can be found in Table 4. The mean, min, and max
accuracy across random seeds is shown for both models, and for 10 random seeds or 100 random
seeds.

6 Analysis

6.1 Failed replication

The original result in Gogate et al. (2017) was far from being achieved with our setup, when proper
methodology was used. Two opposing hypotheses for this are: 1) their result is legitimate, but
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Figure 3: Average accuracy achieved for each seed and each condition, for the GogateCNN model.

Model Num. seeds Mean/max/min Accuracy
Baseline 10 Mean 53.33%
Baseline 10 Min 33.33%
Baseline 10 Max 70.83%
Baseline 100 Mean 52.96%
Baseline 100 Min 29.17%
Baseline 100 Max 70.83%
GogateCNN 10 Mean 50.00%
GogateCNN 10 Min 50.00%
GogateCNN 10 Max 50.00%
GogateCNN 100 Mean 50.00%
GogateCNN 100 Min 50.00%
GogateCNN 100 Max 50.00%

Table 4: Validation accuracies across 10 data splitting random seeds, for untrained models. The high
variance for the Baseline may be indicative of a lack of independence in the dataset. The low variance
for the GogateCNN may be a result of the complexity of the model.

something about our approach was flawed; for instance, perhaps the Bayesian Optimization setup
was flawed in a way that prevented it from learning performant hyperparameters; 2) their result is
not legitimate, and one or more methodological flaws made it possible; for instance, if the random
seed for data splitting was not explicitly fixed, it could potentially change across runs. The data
above suggests this would lead to large variations in performance, and so would eventually leading to
performant results without the authors necessarily knowing the true cause.

6.2 Ablations

The ablation studies had mixed results. Notably, standard deviation was high across random seeds. As
a result, taking the max across random seeds consistently led to performance gains. Test tuning also
led to considerable gains with the Baseline, whereas lack of regularization led to considerable gains
in the GogateCNN. Also notable, the GogateCNN predicted exactly 50% for several runs, indicating
as issue. Also, for both the Baseline and the GogateCNN, making only poor methodological choices
consistently led to significant performance gains. Lastly, from the plots of accuracies by random seed,
it seems there is correlation between performance levels by random seed, suggesting perhaps that
some seeds are generally “better” than others.

6.3 Random Seed Analysis

Interestingly, the untrained Baseline model had very large variations in accuracy by random seed, a
37% difference between the max and min across only 10 random seeds. If we were to assume the
untrained model is equivalent to random guessing, and that the validation samples are independent,
then the probability that the model would achieve 70.83% accuracy or better is only 3%, which comes
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from applying the cumultative distribution of the binomial distribution. Across 10 samples, at best
this happening once has a 30% chance, using a union bound. So, from this data alone, it is unclear
whether the assumption that the model approximates independent random guessing is warranted.
If its not warranted, and its not a coincidence that this somewhat unlikely outcome occurred, that
would suggest that that the data samples are not independent. For instance, perhaps if the randomly
initialized model predicts a label for one sample, it is likely to predict the same label for a sample in
the same "cluster." The clusters would be something inherent to the data, and for instance perhaps the
data is clustered by speaker. In any case, more examination is needed to determine whether this may
be the case. Since similar, but unreported results were produced, its expected these results are more
than coincidence. If that turns out to be the case, it could be be a methodological flaw for all papers
using the Real-Life Trial dataset.

As for the GogateCNN, it predicted 50% accuracy every time, which could be due to the complexity
of the model. Specifically, due to the numerous layers, it could be that the input data essentially gets
washed out, leaving only noise, and the noise adds up to be tightly centered such that each label is
predicted almost exactly 50% of the time. More investigation would be needed to verify this, and to
test other hypotheses.

7 Conclusion

The unimodal textual classifier from Gogate et al. (2017) was replicated, but achieved accuracy fell
short by 34% when proper methodology was employed. Additionally, it was shown that improper
methodology can lead to an accuracy boost of up to 26%, and that random seeds can account for
variation of up to 37% across only 10 random seeds.

Ultimately, the fundamental issue with Gogate et al. (2017) seems to be both improper methodology,
and the smallness of the dataset - and these two factors are some cause for doubt over the impressive
results reported generally in the field of machine learning deception detection.

Lastly, more work is needed on the subject of validating the performance of machine learning
deception detection systems. Similar to the polygraph, understanding the true reliability of these
systems may be crucial to impactful decisions, whether policy decisions or investment decisions.
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