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Abstract

Foundation Models pre-trained on general domain data may not perform optimally
on specific tasks. Adaptation and fine-tuning are two major ways to customize pre-
trained models with task specific data. This project investigates the enhancement
of model performance through LoRA adaptation on a minBERT model for several
downstream NLP tasks including sentiment classifications, paraphrase detection,
and semantic textual similarity without updating the pre-trained model parameters.
We implemented two architectures: one common LoRA adaptation layer for three
tasks as well as separate LoRA adaptation layer for each task individually. Our
findings suggests the inclusion of LoRA presents potential benefits. However, it
does not constitute a universal solution for multitask learning challenges. And
task-specific LoRA configuration can achieve better overall performance.

1 Introduction

As large language models gain popularity, businesses across various industries are interested in
harnessing their significant potential. Fine-tuning and adaptation are the two primary methods for
leveraging large-scale, pre-trained language models, often referred to as Foundation Models, for
specific downstream applications. A significant drawback of fine-tuning is that the fine-tuned model
retains the same number of parameters as the original model. As Foundation Models grow increasingly
larger, the cost of fine-tuning models for each task rapidly becomes prohibitive. Adaptation addresses
this challenge by updating only a subset of parameters for new tasks. Proposed by (Hu et al., 2021),
LoRA is a low-rank adaptation method that excels in both storage and computation efficiency. By
keeping the pre-trained weights in the pre-trained model frozen, LoRA introduces and trains pairs of
rank decomposition matrices. These newly learned weights from additional task specific data can
then be integrated with the pre-trained weights during inference without introducing higher inference
latency.

The primary goal of this project is to implement the minBERT model and improve its performance
through LoRA adapatation for the downstream tasks of sentiment analysis, paraphrase detection,
and semantic similarity without updating the pretrained model parameters. Specifically, this project
will investigate the model performance on the downstream tasks simultaneously. We will assess the
outcomes from the baseline, fine-tuned, and low-rank adapted minBERT models.
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2 Related Work

2.1 Transformer and BERT

Transformer is a deep learning sequence-to-sequence model architecture that use the innovative
self-attention mechanism. Unlike its predecessors, such as RNNs and LSTMs, it does not require data
to be processed in order. The Transformer model, introduced in the paper "Attention is All You Need"
by Vaswani et al. (2017), relies heavily on the self-attention mechanism to draw global dependencies
between input and output, which allows for the model to learn long-distance dependency and enables
computation parallelization that speed up training significantly. Since then, Transformer-based
language models have dominated the field of NLP, achieving the state-of-art in many tasks. BERT
(Devlin et al., 2018) is a large transformer language model pre-trained on a large amount of text. It is
designed to pre-train deep bidirectional representations by jointly conditioning on both left and right
context in all layers, which enables the model to capture a rich understanding of language context
and word relationships. The innovation of BERT lies in its ability to pre-train on a large amount of
text and then fine-tune for specific tasks with minimal task-specific architecture modifications. This
approach has led to state-of-the-art performances on a wide range of NLP tasks, including question
answering, named entity recognition, and sentiment analysis.

2.2 Fine-Tuning and Parameter-Efficient Adaptation

There are a few different strategies for leveraging pre-trained large language models and applying it
to a downstream task with more specialized requirements. Fine-tuning is a popular approach that
involves continuing the training process of the pre-trained model on a much smaller, task-specific
dataset (Devlin et al., 2019). During fine-tuning, the parameters of the entire model can be updated
to better perform the target task, such as sentiment analysis, question answering, or document
classification. Fine-tuning a highly efficient and effective method. However, as the size of pre-trained
models increases, exemplified by GPT-3’s 175 billion parameters, performing fine-tuning in the usual
way becomes challenging due to large checkpoint it produces and the high hardware barrier to entry
since it has the same memory footprint as pre-training.

Parameter efficient adaptation helps to address this challenge by minimizing the number of parameters
that need to be updated while fine-tuning the model on a specific task or dataset. This approach is
beneficial when computational resources are limited or when the task-specific dataset is relatively
small. Various adaptation approaches were proposed. For example, prefix-embedding tuning (Li and
Liang, 2021) involves inserting special trainable tokens into the input sequence. They found that by
learning only 0.1% of the parameters, prefix-tuning obtains comparable performance. Adapter tuning
(Houlsby et al., 2019) introduces adapter layers between the self-attention layer and the subsequent
residual connection, offering a modular way to customize a model. Both LoRA and adapter tuning
are recognized for their parameter efficiency in model adaptation. However, a limitation of adapter
tuning is the introduction of inference latency due to the added adapter layers.

2.3 Low-Rank Structure

Low-rank structure is very common in large and high-rank matrices. Those heavily over-parametrized
neural networks usually can be closely approximated with fewer parameters without significant loss
in performance (Oymak et al., 2019). The basic idea is to decompose a large, potentially high-rank
matrix into the product of two or more smaller matrices, where the inner dimension is the rank of
the approximation. This rank is typically much smaller than the original dimensions of the matrix,
leading to a significant reduction in the number of parameters.

3 Approach

3.1 Baseline

The baseline for the sentiment classification task with the vanilla minBERT model is provided in the
handout. Accuracy is used to evaluate the model performance for sentiment analysis and paraphrase
detection on the SST/CFMIBD and Quora datasets, respectively for each task. For semantic textual
similarity, we use the Pearson score evaluated on the SemEval STS dataset.
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3.2 LoRA Adapatation

LoRA updates weights on a low "intrinsic rank" during adaptation. For a pre-trained weight matrix
W0 ∈ Rd×k, LoRA constrains its update to the weights with a low-rank decomposition W0+∆W =
W0 +BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d, k). During training, only A and
B will be updated, while W0 is frozen and does not receive gradient updates. For h = W0x, the
modified forward pass yields:

h = W0x+∆Wx = W0x+BAx (1)

3.3 Task Specific Multi-LoRA Architecture

We adapted the pre-trained BERT model using LoRA to simultaneously perform three tasks: sentiment
analysis, paraphrase detection, and semantic textual similarity. Given LoRA’s performance sensitivity
to specific tasks and datasets, we further tailored our implementation with separate LoRA adaptations
for each task to optimize model performance.

4 Experiments

4.1 Data

Four major datasets will be used in this project. For sentiment analysis task, we will use Stanford
Sentiment Treebank (SST) and CFIMDB datasets. The SST dataset consists of 11,855 single sentences
extracted from movie reviews. The dataset was parsed with the Stanford parser and includes a total
of 215,154 unique phrases from those parse trees. Each phrase has a label of negative, somewhat
negative, neutral, somewhat positive, or positive. The CFIMDB dataset consists of 2,434 highly
polar movie reviews. Each movie review has a binary label of negative or positive. For paraphrase
detection task, we will use a subset of the Quora dataset that consists of 400,000 question pairs with
labels indicating whether instances are paraphrases of one another. For semantic textual similarity
task, we will use SemEval STS Benchmark dataset that consists of 8,628 different sentence pairs of
varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning).

4.2 Evaluation method

For sentiment analysis and paraphrase detection, we will use accuracy to evaluate our model per-
formance. For semantic textual similarity, the output is a value between 0 and 5. We will use
the Pearson correlation score to evaluate our model performance. We also explored establishing
a baseline performance for our model by using a pretrained model, such as DistilBERT, to obtain
sentence embeddings and calculate the cosine similarity between them. We found the resulting
cosine similarities to be very high, typically above 0.9, even for two seemingly different sentences.
After careful evaluation and discussions with the teaching assistant, we decided to use our model’s
performance prior to any extensions as the evaluation baseline.

4.3 Experimental details

Our experiments are methodically structured to assess the efficacy of multitask learning within
a BERT-based framework, followed by the integration and evaluation of Low-Rank Adaptation
(LoRA). The deliberate and incremental approach enabled a clear understanding of the impact of
each component and configuration within the multitask BERT model. We outline our procedural
approach for these experiments below.

Baseline Multitask Configuration: The baseline setup involves utilizing a BERT model with frozen
pretrained parameters, augmented with three task-specific layers dedicated to sentiment classification,
paraphrase detection, and semantic textual similarity. The model operates under the multitask
paradigm, with simultaneous updates across all task-specific layers.

Fine-tuning Procedure: Building upon the baseline, we proceeded to fine-tune the pretrained BERT
parameters using a learning rate of 1e− 5 across 10 epochs of training. This step was executed with
the aim to understand the impacts of parameter adjustments on the model’s task-specific performance.
The task-specific layers were also updated by the finetuning process.
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LoRA Integration Process: The experimental trajectory then advanced to the integration of a
common LoRA layer across all tasks. The LoRA layer was incorporated while keeping the pretrained
BERT parameters frozen, to discern the individual contribution of the LoRA mechanism to the
multitask learning process.

Variations in LoRA Configurations: To meticulously evaluate the influence of the LoRA component,
we explored various LoRA configurations. This involved altering the rank parameter and adjusting
the alpha values and dropout rates. These experiments are key to pinpointing the LoRA configuration
that harmonizes best with the multitask framework.

Task-Specific LoRA Adaptations: Following the common LoRA layer experiments, we tailored
the LoRA adaptation to each task independently. This customization is indicative of our pursuit
to optimize the interaction between LoRA and the idiosyncrasies of each task within the multitask
setting.

Training Time and Computational Resources: Our LoRA experiments were conducted for 1
epoch each to ensure comparability across configurations. We also noticed a plateau in the loss
curve after even 1 epoch, which persisted in following epochs. To avoid unnecessary training time
after understanding this, we continued using 1 epoch in following experiments. The training was
performed on 1 NVIDIA T4 GPU on a Google Cloud VM, with an average training time of 12
minutes per epoch.

4.4 Experimental Results

Our experimental journey encompassed an array of model configurations, each evaluated on their
performance across our three distinct NLP tasks. Detailed results and our observations are reported
below.

4.4.1 Multitask Baseline and Fine-Tuning Performance

In our experiment, we first established a multitask baseline by leveraging a pre-trained BERT model
with its parameters frozen, while simultaneously updating three task-specific layers. As reported in
Table 1, the pre-trained model achieves a decent accuracy on three tasks, especially for paraphrase
detection mainly due to the much larger training data set. Subsequently, we conducted a fine-tuning
experiment where, unlike the baseline, the BERT pre-trained parameters were allowed to update
during training alongside the three task-specific layers.

Table 1: Multitask Baseline and Fine-tuning Performance

Metric Sentiment Accuracy Paraphrase Accuracy Similarity Pearson
Training Data Size 8,544 141,506 6,041

Multitask Baseline 0.447 0.692 0.277
Fine-Tuning 0.405 0.761 0.168

The results from this phase of experiments suggest that a larger training dataset for a specific task
significantly enhances the task-specific accuracy of the model. This observation aligns with the
general understanding that more data can lead to better model performance, given that the model
has enough capacity to learn from the increased data. The results also indicate potential conflicts
among the tasks when trained simultaneously. This is evidenced by the increased accuracy on
paraphrase detection but deteriorated performance on other two tasks. This phenomenon, known as
negative transfer, suggests that the tasks may compete for model capacity, leading to compromised
performance on some tasks.

4.4.2 LoRA Configurations

In this comprehensive experiment, we investigated the effects of different LoRA configurations on the
pre-trained BERT model’s performance across these three pre-defined tasks. The primary objective
was to explore how variations in the rank (r) parameter influence the model’s multitasking capabilities.
While additional experiments were conducted to assess the impact of other LoRA parameters such as
the alpha value, dropout rate, and target modules, it was found that the model’s performance was
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relatively less affected by these factors. For the sake of brevity, we focus exclusively on the outcomes
associated with varying the rank parameter. As a general rule derived from empirical success in
research, it is suggested to use an alpha value twice as large as the rank value. This heuristic ensures
controlled yet significant updates to pre-trained weights. LoRA adapatation was applied to both value
and query matrices in all the experiments.

Table 2: LoRA Configurations and Model Performance

LoRA r alpha dropout Sentiment Accuracy Paraphrase Accuracy Similarity Pearson
Y 2 16 0.1 0.451 0.681 0.278
Y 4 16 0.1 0.421 0.681 0.281
Y 8 16 0.1 0.423 0.677 0.276
Y 16 16 0.1 0.428 0.654 0.309
Y 32 16 0.1 0.439 0.679 0.287
Y 32 32 0.1 0.439 0.679 0.287
Y 64 32 0.1 0.420 0.686 0.272

The results indicate a nuanced relationship between the LoRA configuration and the model’s perfor-
mance across different tasks as shown in table 2. Notably, increasing the rank (r) beyond 2 generally
led to improvements in sentiment classification accuracy up to a certain point (r=32). However, the
best sentiment classification accuracy was achieved when r=2, suggesting a nonlinear relationship
between rank and model performance. The paraphrase detection task showed less sensitivity to
changes in rank, with accuracies remaining relatively stable across different configurations. This
suggests that the task might be less affected by the low-rank structure introduced by LoRA. For
semantic textual similarity correlation, the highest score was achieved with r=16.

We also monitored the training loss closely using the Tensor board. An typical example is shown
below with behavior that we observed in most of the experiments.

Figure 1: LoRA Adaptation Training Loss

4.4.3 Task-Specific LoRA Adaptation Performance

In this experiment, we explored the efficacy of implementing task-specific LoRA configurations
within a multitask learning framework using a pre-trained BERT model. The primary objective was
to ascertain whether different tasks within the multitask setup could benefit from a unique LoRA
configuration, potentially leading to enhanced overall model performance. The model was trained for
one epoch across all tasks, with varying LoRA configurations applied specifically to each task. The
configurations varied in terms of the rank (r) and the application of LoRA to the BERT model’s Value
and/or Query layers, with some configurations also exploring the impact of adjusting the dropout rate.
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Table 3: Performance of LoRA Adaptation on Sentiment Classification

Sentiment Classification

Rank Dropout Target Module Accuracy
4 0.1 Value, Query 0.44
4 0.1 Value 0.441
2 0.1 Value, Query 0.452
2 0.2 Value, Query 0.439

Table 4: Performance of LoRA Adaptation on Paraphrase Detection

Paraphrase Detection

Rank Dropout Target Module Accuracy
2 0.1 Value, Query 0.701
2 0.1 Value 0.671
2 0.05 Value, Query 0.696
2 0.2 Value, Query 0.702

Table 5: Performance of LoRA Adaptation on Semantic Similarity Pearson Correlation

Semantic Similarity Pearson

Rank Dropout Target Module Pearson
16 0.1 Value, Query 0.288
16 0.1 Value 0.283
32 0.1 Value, Query 0.300
32 0.05 Value, Query 0.295

The results indicate that each task may have a distinct optimal LoRA configuration. For instance,
sentiment classification achieved the highest accuracy with a rank of 2 applied to both Value and
Query layers, whereas paraphrase detection peaked at a rank of 2 under the same conditions. Semantic
textual similarity showed the best correlation with a rank of 32 applied to both Value and Query
layers.

5 Analysis

Upon reviewing our results, we observed that integrating LoRA into our model configurations does
not consistently outperform the baseline model across all tasks. While certain configurations with
LoRA showed slight improvements in sentiment classification and semantic textual similarity, they
did not deliver a clear advantage in paraphrase detection. These mixed outcomes led us to conjecture
that the benefit of LoRA might be context-dependent, enhancing performance on certain tasks while
being less effective or neutral on others.

Specifically, we noticed that increasing the rank parameter r within LoRA adaptations does not
uniformly translate to better performance. This countered our original hypothesis that larger matrices
would automatically increase performance by capturing more sophisticated patterns. The optimal rank
setting seems to differ across tasks, underlining the necessity for task-specific tuning when applying
LoRA in a multitask framework. The complexity added by LoRA, indicated by the alpha parameter,
similarly did not correlate directly with improved results, suggesting that there is a nuanced balance
between model complexity and task performance.

In our experimentation of LoRA configurations, we specifically scrutinized the interplay between
rank (r), alpha, and dropout parameters. This meticulous examination was anchored in the hypothesis
that each task’s unique characteristics and complexity would resonate differently with the structural
adjustments induced by LoRA. For sentiment classification, a task that inherently involves navigating
nuanced linguistic expressions and context, we observed that a lower rank (r = 2), coupled with a
moderate alpha value (16) and a dropout rate of 0.1, yielded the highest accuracy. This configuration
suggests that minimal yet precise updates to the model’s attention mechanism are pivotal in capturing
the subtle distinctions within sentiment-laden text, thereby enhancing classification performance
without overwhelming the model with excessive parameter adjustments.

Conversely, for the paraphrase detection task, the stability across varying rank settings underscored
a less pronounced sensitivity to the low-rank structure, potentially due to the binary nature of the
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task that hinges on comparative rather than nuanced understanding. The relative insensitivity to
rank variations could imply that paraphrase detection benefits more from the semantic understanding
embedded in the original BERT weights than from the adaptability offered by LoRA’s low-rank
updates.

Semantic textual similarity, characterized by the need to gauge fine-grained semantic nuances,
exhibited optimal correlation at a higher rank (r = 16), indicating that a more complex low-rank
update facilitates a richer representation of semantic relationships. However, the performance
dip observed at ranks beyond 16 serves as a testament to the diminishing returns and potential
overfitting associated with overly complex adaptations, emphasizing the critical balance between
model expressiveness and over-parameterization.

This granular analysis of LoRA configurations revealed the task-dependent optimal tuning of rank,
alpha, and dropout parameters, showing the need for balance between maintaining the pre-trained
model’s generalizability and introducing targeted adaptability. For sentiment classification, a conser-
vative approach with lower rank values proved beneficial, while semantic textual similarity called for
a moderately higher complexity via increased rank.

Our quantitative findings led us to understand that while the inclusion of LoRA presents potential
benefits, it does not constitute a universal solution for improving performance in multitask learning.

Summary of Key Observations

• Larger training datasets substantially improve task-specific model accuracy
• There is potential conflict among tasks when trained simultaneously
• LoRA integration does not guarantee performance increases relative to the baseline multitask

model and is highly dependent on hyperparameter selection
• Task-specific LoRA configurations can optimize performance for individual tasks, but may

harm performance of other tasks

6 Conclusion

In this project, we delved into the integration and analysis of LoRA layers within a multitask learning
framework based on BERT. Our journey began with establishing a baseline multitask classifier,
which we incrementally enhanced by introducing and refining LoRA layers for each specific task.
We successfully implemented a custom and functional LoRA framework for linear layers (see the
/lora directory in our project folder) and conducted extensive experiments where we tuned the
hyperparameters of LoRA layers to attempt achieving better performance.

Each experimental phase built upon the insights gained from the preceding one, enabling a cumulative
enhancement in our approach. We ventured to show that alternatives to fine-tuning such as LoRA are
indeed viable, but found that true performance gains are highly contingent on the precision of their
configurations.

Our work was not without its limitations. Time was a significant constraint, as developing a fully
custom LoRA library proved to be a much more extensive undertaking than initially anticipated.
As we came to learn while developing this extension, existing codebases to integrate LoRA across
an entire pretrained transformer model often span span more than 3, 500 lines of high-complexity
code and are maintained by a host of top-tier ML engineers. Our custom implementation allows
for adaptation of feedforward linear layer weights, but future work would involve creating these
implementations for the Query, Key, Value and Output projection matrices.

For future work, we propose the development of a streamlined version of these extensive libraries. This
minified edition would focus solely on the essential components necessary for the implementation of
LoRA. Such a focused library would not only facilitate a deeper understanding of LoRA’s mechanics
but also enhance accessibility for researchers and practitioners wishing to explore this alternative
finetuning approach.

Furthermore, a great area for future research would be in better understanding the interactions
between LoRA configurations and task-specific performance by, for example, developing automated
testing suites to identify optimal hyperparameters. The combinatorial complexity of hyperparameter
selection for LoRA explodes for pretrained models with many intermediate Transformer layers and
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model adapters, so finding a method to do this automatically and at low-cost (i.e. without the need
to fully train on each hyperparameter set) would be fascinating and highly useful. We would have
certainly loved such a tool during our experimental process.

In conclusion, our project underscored the potential of innovative fine-tuning replacements in the
form of LoRA. The critical takeaway is the importance of task-specific configuration sensitivity,
which emerges as a cornerstone for successful multitask learning. Despite not having achieved
increased performance results, the knowledge we have amassed sets an exciting foundation for future
experimentation in building and optimizing Transformer models.
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