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Abstract

Contrastive learning has become a valuable tool for handling a variety of down-
stream NLP tasks. In this project, we aim to identify how the performance of our
base minBERT model can be improved by integration of the SimCSE contrastive
learning framework and enhance sentence embeddings for downstream tasks. We
also introduce cycling iterators with task-weighted losses for balanced training
across different datasets. Our findings reveal that SimCSE significantly enhanced
sentiment classification by employing dropout as data augmentation to generate
robust sentence embeddings. Our best performance was achieved by our final
minBERT model with the following extensions: simCSE, dataset-specific weights,
task-specific updates, and updated similarity concatenation techniques.

1 Key Information to include

• Mentor: Hamza Al Boudali

2 Introduction

In the rapidly evolving field of NLP, understanding and generating human-like text has remained a
significant challenge due to the many subtleties of the human language. This quest has led to the
innovation of new transformer architecture and large language models, essential for improving the
performance of downstream NLP tasks.

However, traditional state-of-the-art sentence embedding methods have struggled with generating
representations that effectively capture the nuanced semantic relationship between sentences, often
relying heavily on supervised learning tasks or complex unsupervised methods that do not fully
exploit the potential of pre-trained language models (Tianyu Gao, 2021) The focus of our research
revolves around the addition of a contrastive learning framework to our base BERT model, and how
additionaly adjustments to adaptive attention and dropout may improve performance on downstream
tasks.

In this research, we implement a minimally adjusted version of Devlin’s BERT large-language
model and use pretrained sentence embeddings for three downstream NLP tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity (Devlin et al., 2018). We then implement
SimCSE, a simple contrastive learning framework proposed by Tianyu Gao (2021), upon the base
BERT model, and investigate changes in performance on NLP tasks. Contrastive learning builds
superior language representations by pulling semantically close “positive” neighbors close and
pushing “negative” sentences apart.
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3 Related Work

Within the last decade, natural language processing has been significantly transformed and advanced,
with the introduction of language representation models like Devlin et. al’s BERT. Devlin et. al
present a Bidirectional Encoder Representation from Transformers model that revolutionized the
process of pretraining deep bidirectional representations from unlabeled text by conditioning on
both the left and right context in all layers (Devlin et al., 2018). This novel approach gave BERT
the flexibility to adapt to a wide range of NLP tasks without substantial task-specific architecture
modifications, leading to strong and enhanced performance on GLUE scores, SQuAD v.1.1 question
answering, and SQuAD v2.0

The promising success of BERT sparked further exploration into enhancing NLP models using novel
techniques such as contrastive learning. Logeswaran and Lee (2018) introduced a framework for
learning sentence representations from unlabeled data by reformulating the problem of predicting sen-
tence context as a classification task. By employing a form of contrastive learning with a dual-encoder
approach where observed contexts were encouraged to be more plausible than contrastive ones,
Logeswaran and Lee improved performance on several downstream tasks involving understanding
sentence semantics in an order of magnitude faster time (Lajanugen Logeswaran, 2018).

Many authors have attempted to further push modern NLP models via contrastive learning in different
contexts. Wieting and Gimple (2015) turned their attention to improving universal paraphrastic
sentence embeddings. They explored six different compositional models to encode arbitrary word
sequences into vectors with high cosine similarity for sequences with similar meanings, including
averaging token vectors and utilizing deep averaging networks (John Wieting, 2015). Later, Gillick et
al. (2019) introduced a similar approach in the space of entity retrieval by training a dual encoder
model that encodes mentions and entities in the same dense vector space (Dan Gillick, 2010). Thus,
candidate entities are retrieved by approximate nearest neighbor search.

Finally, Tianyu Gao (2021)’s SimCSE paper presents a groundbreaking contrastive learning frame-
work for advancing sentence embeddings past state-of-the-art standards. In the unsupervised approach
for their model, SimCSE takes an input sentence and predicts itself in a contrastive objective, leverag-
ing standard dropout as noise. Dropout serves as minimal data augmentation, crucial for preventing
representation collapse. Although simplistic, this approach performed exceptionally well. The super-
vised approach incorporates annotated pairs from datasets to encode "entailment pairs" as positives
and "contradiction" pairs as hard negatives (Tianyu Gao, 2021). Tianyu Gao (2021)’s SimCSE paper
serves as a crucial inspiration for our work, motivating us to explore the potential of contrastive
learning and various modifications in enhancing language representation models like minBERT.

4 Approach

4.1 Bert Implementation

As the starting point of our research, we first implemented a minimal BERT model, following the
architecture outlined in the original paper by Devlin et al. (2018). The BERT model architecture is
composed of a stack of 12 Encoder Transformer layers, as described in the seminal paper by Vaswani
et al. (2017).

Specifically, within each transformer layer, we completed the multi-head self-attention component,
followed by layer normalizations and a position-wise feed-forward layer, and finally applied dropout
with a setting of pdrop = 0.1.

4.2 Downstream Tasks

For each downstream task, we incorporated task-specific layers atop BERT’s output, enabling targeted
predictions tailored to the nuances of each task. In particular, linear transformations are applied,
which allow the model to learn complex patterns and representations, and also output logits. We also
employed task-specific loss functions, including cross-entropy loss for sentiment classification, binary
cross-entropy loss for paraphrase detection, and the SimSCE loss function for semantic similarity.
These tailored loss functions facilitated effective optimization for each task.
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To address the task of sentiment classification, we appended a linear layer atop BERT’s output to pre-
dict sentiment classes. We utilized cross-entropy loss for training and applied dropout regularization
to prevent overfitting.

In paraphrase detection, we engineered concatenated features to capture semantic nuances between
sentence pairs, leveraging the absolute difference and sum of embeddings, as seen in John Wieting
(2015). This feature engineering technique enhanced the model’s ability to discern paraphrases
accurately. We employed binary cross-entropy loss for training, as there was only one output logit,
with logits passed through a sigmoid function for prediction.

For sentiment classification, in addition to the linear transformation layers we applied, we also
utilized ReLU activation layers, which introduces non-linearity to the model, enabling it to learn
more intricate decision boundaries, which can be crucial for tasks like sentiment classification where
the relationships between input features and sentiment labels may not be linear. Vinod Nair (2010)
and then calculated the cross-entropy loss. This was summed with our SimSCE loss function, used
contrastive learning and cosine similarity between sentence pairs is computed to assess their semantic
similarity.

4.3 SimCSE Integration

Upon our base BERT model, we implemented the SimCSE contrastive learning framework as
proposed by Tianyu Gao (2021). This integration aims to leverage unsupervised learning to generate
more discriminative sentence embeddings.
In the SimCSE framework, we create positive pairs by passing the same sentence through the BERT
model twice, applying standard dropout, and thus obtaining two different ‘positive’ embeddings.
Other sentences in the same mini-batch are treated as negative pairings.
Given a sentence s, we generate two embeddings, h, and h′, by applying the BERT model with
independently dropout masks:

h = BERTdropout1(s)h
′ = BERTdropout2(s) (1)

Contrastive learning aims to maximize the similarity between positive pair h and h′ while minimizing
the similarity between h and embeddings of other sentences in the batch (??). The loss function for a
single positive pair h, h′ in a mini-batch of size N is defined as:

L = − log
e

sim(h,h′)
τ∑N

i=1 e
sim(h,hi)

τ

(2)

Where sim(h, h′) is the cosine similarity calculated between embeddings h and h’, and τ is a
temperature hyperparameter that scales the similarity scores. z is the standard dropout mask in the
original BERT model, and was not modified. The value, 0.1, for the probability of the dropout layer
was calculated by Tianyu after rigorous experimentation and optimization.

4.4 Cycling and stabilization

We employ cycling iterators, as opposed to padding or truncating data, to ensure balanced exposure to
data from each task during training. Task-weighted losses are utilized to address dataset imbalances
and optimize task-specific performance. These losses are inversely proportional to each dataset’s size
to address any potential bias stemming from dataset size discrepancies. By assigning higher weights
to smaller datasets, our model is incentivized to allocate more resources towards learning from these
datasets, thereby mitigating the impact of dataset imbalances on model performance. Additionally,
the utilization of cycling iterators ensures that each task receives equitable attention during training,
minimizing the risk of overfitting to a particular task or dataset. Gradient clipping is applied to further
stabilize training.

4.5 Optimizer

Furthermore, we employed the Adam optimizer, a stochastic optimization method that adjusts
learning rates for various parameters. Our implementation includes the step() function, which updates
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exponential moving averages of gradients and squared gradients, performs bias correction, and
incorporates weight decay regularization, referencing Loshchilov and Hutter (2017). We adopted
Kingma and Ba’s Adam optimization algorithm as our baseline (Kingma and Ba, 2014).

5 Experiments

5.1 Data

Our base minBERT model was pre-trained using two unsupervised tasks – masked token prediction
and next sentence prediction – on Wikipedia articles. We utilized distinct datasets across three
different downstream NLP tasks to fine-tune and evaluate the performance of minBERT model.
Below, we detail the datasets we employed, including their structure, content, and the tasks they
facilitate.

For sentiment analysis, we leverage two datasets: the Stanford Sentiment Treebank (SST) dataset and
the CFIMDB dataset. The SST dataset comprises of 11,855 sentences from movie reviews, extracted
and parsed to include a total of 215,154 unique phrases. Each phrase is annotated with one of five
sentiment labels: negative, somewhat negative, neutral, somewhat positive, and positive(Socher
et al., 2013). This granularity allows for a nuanced understanding of sentiment beyond simple binary
classification. The CFIMBD dataset contains 2,434 highly polar movie reviews labeled as positive or
negative, with a focus on distinguishing between extreme sentiments (Maas et al., 2011).

For the task of paraphrase detection, we used the Quora Dataset, which consists of 400,000 question
answer pairs. Each pair is annotated with a binary label indicating whether the pair is a paraphrase
of each other. Lastly, to assess semantic textual similarity, we used the SemEval STS Benchmark
dataset that features 8,628 sentence pairs. Each pair is scored from 0 (indicating no relation) to 5
(indicating equivalent meaning).

Each dataset is fine-tuned separately on the pre-trained minBERT model to adapt its embeddings to a
specific task. We loaded pre-trained model weights into minBERT and adjusted these embeddings
through task-specific training on each dataset.

5.2 Evaluation method

For our evaluation, we utilize the evaluation metrics outlined in the CS 224N default project handout.
In order to assess the performance of our base minBERT implementation without extension, we
compare our accuracies against mean reference accuracies for the SST and CFIMDB datasets. For
multitask tasks, we measure our model quality by accuracy on SST and QQP and Pearson correlation
on STS. We also utilize overall dev score, which is calculated by normalizing the score of each
downstream task between 0 and 1, and then averaging those three metrics together.

5.3 Experimental details

Base learning rate and number of epochs BERT layers include a dropout rate of 0.1, while the
classification head employs a dropout rate of 0.3. In each experiment, we ran 10 epochs with a
fine-tune learning rate of 1e-5 and pretrain learning rate of 1e-3. This was deemed sufficient to
achieve maximum performance on the development set, as we observed peak performance on the
development set is observed around the 3rd to 4th epoch. Thus, unless stated otherwise, the learning
rate of 1e-5 is kept constant for further experiments. The best development set performance over 10
epochs on training sets is reported.

Non-linearity for Sentiment Classification For sentiment classification, we examine the idea of
introducing non-linearity and additional linear transformation layers to improve accuracy. It was
found that introducing non-linearity to the model, in the form of additional ReLU activation layers,
as from (Vinod Nair (2010)), enhanced the results of the mean accuracy for the SST database. Three
linear layers (sentiment linear, sentiment linear1, sentiment linear2) are applied sequentially to
transform the BERT embeddings. Each linear layer has an input size of config.hiddensize and an
output size of config.hiddensize. This configuration allows for non-linear transformations of the
BERT embeddings. This was found to be effective in bolstering our SST accuracy. We discovered
the numbers were better reflected once the datasets were weighted.
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Table 1: Comparison of Baseline and Our minBERT Implementation Results

One Linear Layer Multiple linear and non-linear layers (unweighted)
Multiple linear and non-linear layers (weighted)
Pretraining for SST 0.390 (0.007) 0.409
Pretraining for CFIMDB 0.780 (0.002) 0.788
Finetuning for SST 0.515 (0.004) 0.530
Finetuning for CFIMDB 0.966 (0.007) 0.971

Table 2: Comparison of Linear and non-linear layers

One Linear Mult. Unweighted Mult. Weighted

SST Accuracy 0.316 0.319 0.345

Paraphrase Concatenation For paraphrase detection, we examine the idea of concatenating the
absolute difference and sum between embeddings, as from John Wieting (2015) We experimented
at first with concatenating the two embeddings. Then it was discovered that concatenating the two
values for absolute difference and absolute sum improved the mean accuracy for paraphrase detection.

Table 3: Comparison of Paraphrase Embedding Concatenation

Concatenating Embeddings Concatenating the Absolute Difference and Sum
Paraphrase Accuracy 0.379 0.455

Cycling To incorporate data from all three datasets, it was necessary to experiment an approach to
iterate through data. We experimented with truncating all the datasets to the size of the smallest
dataset, STS. This was found to be the least effective method to iterate through data based on the
total manually calculated mean. Then we experimented with padding the smaller datasets with 0s,
which then flagged those values to not contribute that respective loss. This improved our overall mean
accuracy, but significantly improved the paraphrase detection accuracy. Finally, we implemented
cycling iterators that ensured that each task is sampled equally over multiple iterations. This further
improved the mean.

Table 4: Comparison of different iteration methods

Method STS Accuracy SST Accuracy Paraphrase Accuracy Mean
Truncating -0.020 0.314 0.380 0.225
Padding -0.014 0.315 0.420 0.240
Cycling -0.002 0.319 0.455 0.257

Weights and Stabilizations We experimented with weighting the respective calculated loss for
each dataset. This immediately equalized the improvement across datasets, as opposed to seeing a
concentrated improvement with just the SST. We experimented with an equal spread weighting each
dataset equally. Then, we experimented with weighting the data inverse proportionally to the size of
the dataset, which was found to be the most impactful method. Gradient clipping was also found to
enhance the accuracy.

Table 5: Comparison of Weights

Method STS Acc. SST Acc. Paraphrase Acc. Overall Dev
Equal Weights -0.002 0.319 0.455 0.424
Proportionally Inverse + Gradient clipping 0.079 0.345 0.513 0.466

SimCSE To further enhance our model, we experimented with contrastive learning, based on the
SimCSE contrastive learning framework as proposed by ?. We experimented with applying different
drop-out to a preliminary embedding to generate a second embedding. We found the 0.1 value to be
most successful in maximizing accuracy. In addition, we attempted to implement SimSCE for other
downstream tasks including paraphrase detection, but found little improvement. As a result, we only
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computed SimSCE for sentiment classification. In addition, we experimented with considering this
contrastive loss as our sole loss calculation for sentiment. Then we experimented with summing this
contrastive loss with the cross-entropy loss calculated already for sentiment classification. This was
where we saw results improve.

Figure 1: Comparison of SST Accuracy using Different Dropout Variations
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Table 6: Comparison of SST Accuracy using Different Loss Calculation Methods

Loss Calculation Only contrastive_loss Contrastive_loss + Cross_entropy_loss
SST Accuracy 0.402 0.441

5.4 Results

In order to evaluate all our different iterative models, the evaluation metrics we utilized were accuracy
for the sentiment analysis and paraphrase detection tasks, and Pearson Correlation for the semantic
textual similarity task.

Table 7: Comparison of Baseline and Our minBERT Implementation Results

Task Baseline Dev Accuracy Our Dev Accuracy
Pretraining for SST 0.390 (0.007) 0.409
Pretraining for CFIMDB 0.780 (0.002) 0.788
Finetuning for SST 0.515 (0.004) 0.530
Finetuning for CFIMDB 0.966 (0.007) 0.971

In Table 7, we report the dev set performance of our base minBERT implementation for sentiment
classification on the SST and CFIMDB test sets as compared to the benchmarks from the default
project handout.Our results closely align with the project handout baseline dev accuracies, which
confirms to us that our base minBERT implementation is correct. In fact, our results are slightly
higher, but since it is not by a significant margin, we have confidence that we implemented minBERT
in just the standard way.

In Table 8, we report the dev performance for all of our proposed iterative models on the SST, Para-
phrase, and STS downstream tasks. We evaluate various multitask learning approaches that combined
our minBERT with different extensions like updated similarity concatenation, a downstream task
update (includes paraphrase concatenation and non-linearity sentiment classification), gradient
clipping, weights for each dataset, and of course our main extension of implementating simCSE.
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Table 8: Model Performance Improvement with Iterative Extensions

Attempt SST dev accuracy Paraphrase dev accuracy STS dev correlation Overall dev score
1st attempt (Base minBERT) (DEV) 0.321 (+0.321) 0.379 (+0.379) -0.059 (+0.941) 0.390 (+0.390)
2nd attempt + updated similarity concatenation (DEV) 0.316 (-0.005) 0.379 (+0.000) -0.034 (+0.025) 0.393 (+0.003)
3rd attempt + downstream task update (DEV) * 0.319 (+0.003) 0.455 (+0.076) -0.002 (+0.032) 0.424 (+0.031)
FINAL attempt + grad. clip. + weights + simCSE (TEST) 0.441 (+0.124) 0.675 (+0.297) 0.269 (+0.304) 0.583 (+0.191)

Note: "downstream task update" includes paraphrase concatenation and non-linearity sentiment
classification implemented so that we train on all 3 of the tasks. The table shows the performance

improvement of each subsequent attempt, where each attempt includes the extensions listed.

The quantitative results illustrate a progressive improvement across our several evaluation
metrics. The improvement from the first to final attempt was significant, and was better than expected.
Notably, the final attempt, which incorporated weights for theLM dataset and SimCSE, showed
significant gains in paraphrase development accuracy and STS development correlation, which also
was surprising. The overall development score also saw a considerable increase, indicating that the
integrated modifications contributed positively to the model’s ability to perform across multiple tasks.

These outcomes suggest that the contrastive learning framework and task-specific optimiza-
tions are highly effective in enhancing the model’s performance. The application of contrastive
learning, in particular, seems to have provided a robust method to generate discriminative sentence
embeddings, a critical component for tasks like sentiment analysis. The step-wise enhancements and
the detailed exploration of various techniques provide a comprehensive roadmap for improving a
model’s performance on NLP tasks. These results affirm the effectiveness of iterative development,
and the importance of model-specific adaptations.

6 Analysis

In terms of the model itself, The minBERT model, a scaled-down version of the BERT architecture,
serves as the foundation. Given that BERT’s architecture is highly capable but also resource-intensive,
minBERT likely aims to balance performance with computational efficiency. The initial performance
may not have been groundbreaking due to its reduced complexity; however, it established a baseline
to gauge the impact of subsequent enhancements.

The limited accuracy in the early iterations may not have introduced sufficient non-linearity. Advanced
NLP tasks often require complex transformations that simple linear models cannot capture. Non-
linearity, introduced through activations like ReLU (Vinod Nair, 2010), was shown as essential for
modeling the complicated relationships in language. In addition, the similarity measures used in early
iterations were not sophisticated enough, and the model might not have been capturing the depth of
semantic relationships necessary for tasks like STS.

The second attempt added updated similarity concatenation techniques, which initially did not
lead to substantial improvements. This method, drawing from techniques such as those described
by John Wieting (2015) for learning structured text representations, enhanced the model’s ability
to capture the semantic nuances between sentences. However, the limited improvement suggests
that while the model could better understand relationships between sentence pairs, it still lacked a
comprehensive understanding of sentence embeddings in isolation, which is crucial for tasks like
STS where individual sentence representations are compared.

The introduction of task-specific updates, which included fine-tuning BERT’s output layers with
additional transformations and applying task-oriented loss functions, were crucial for optimizing the
model’s predictions for each specific task. These allowed the model to fine-tune for the idiosyncrasies
of each task, which is essential for specialized tasks. The third attempt included task-specific
updates such as linear transformations and specialized loss functions. For instance, for sentiment
classification, the addition of ReLU activation layers introduces non-linearity that helps in modeling
complex patterns. However, the improvements were marginal. This could indicate that while the
model began to adapt better to the nuances of specific tasks, the overall representational power of the
sentence embeddings was not significantly enhanced.This initial implementation needed fine tuning,
adjusting specific layers’ methods such as within similarity and paraphrase, suggesting that while the
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model was being better tailored to the tasks, the underlying representations may still have required
refinement.

The final attempt incorporated dataset-specific weights and SimCSE, a contrastive learning framework.
By weighting the loss for each dataset, the model addressed the imbalance in data representation. This
implies that previously, the model might have been biased towards the larger datasets, and smaller
datasets were underrepresented in the loss calculation. The model’s improved performance after
adjusting weights suggests that each dataset now contributed more evenly to the model’s learning
process, leading to better generalization across tasks.

Significant improvements for sentiment classification came from integrating SimCSE, which uses
dropout as a form of noise to create positive and negative sentence pairs for contrastive learning.
The improved performance suggests that dropout as noise allowed the model to generate more
diverse and robust sentence embeddings. The model learned to pull together embeddings of the
same sentence (positives) and push apart different sentences (negatives), refining the sentence space
such that semantically similar sentences are closer. This success is partly because contrastive
learning effectively encourages the model to learn distinct representations for different sentences.
The unsupervised nature and the novel use of dropout as data augmentation allowed the model to
better differentiate between sentences, enhancing its understanding of sentence semantics without the
need for extensive labeled data.

Additionally, using cycling iterators and gradient clipping provided balanced exposure and stable
training across tasks, preventing overfitting and underrepresentation of any single task.

The iterative enhancement process reveals the nuanced nature of NLP model optimization. It demon-
strates the significance of balancing task-specific knowledge with general linguistic understanding.
By examining these extensions and their outcomes, we see the interplay between model architecture,
training techniques, and the importance of a balanced dataset representation in developing a robust
NLP system.

7 Conclusion

Our project revolved around the adaptation and enhancement of Devlin’s BERT model and imple-
mentation of the SimCSE contrastive learning framework in order to refine sentence embeddings.

Our main findings revealed that compared to the baseline BERT model, our model with SimCSE
integration and adjustments for task-specific optimizations significantly elevated performance on
downstream tasks. Furthermore, the iterative introduction of additional non-linearity through ReLU
activation layers and the adjustment of task-specific layers and loss functions led to a nuanced model
capable of discriminating fine semantic differences.

However, our work primarily leveraged unsupervised tasks due to dataset limitations, potentially
overlooking the benefits of supervised fine-tuning on a broader range of datasets. Looking ahead,
future research could including applying our methods to a wider array of NLP tasks and experimenting
with supervised fine-tuning techniques on diverse datasets. Moreover, investigating the potential of
novel data augmentation methods and the deeper integration of multitask learning could continue to
push the boundaries of NLP.
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