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Abstract

Causal language modeling has long been the dominant pretraining objective for
large decoder-only transformer models. However, it is not the only objective when
pretraining language models. In this paper, we explored the possibility to steer
language models and bake in new capabilities by continue pretraining an existing
causal LM, Llama2-7B (Touvron et al., 2023), using a different objective called
UL2 (Tay et al., 2023). The resulting model, Llama-UL2-7B, showed emergent
task performance and acquires new capabilities introduced by the UL2 objective.

1 Key Information to include

• Mentor: Kaylee Burns

2 Introduction

Language modeling is the task of predicting the next token in a given sentence. It is one of the most
important task to tackle with in natural language processing as it is widely used in applications such as
machine translation, text auto-completion, and virtual assistant (chatbot). Given the nature of this task,
the most straightforward way is to use the causal language modeling objective, which constraints that
the next token is only conditioned on the previous tokens. However, such naive objective has several
limitations which suggest that it may not be the best idea to pretrain a language model. For example,
LMs pretrained with causal objective is not able to do text infilling, and it doesn’t utilize bidirectional
information in the prompt when generating text. Because of this, researchers have proposed newer
and more sophisticated pretraining objectives to unlock more capabilities of the language model. One
example is UL2, which combines prefix language modeling with span corruption.

However, pretraining language models from scratch is computationally expensive. With the vast
amount of open-source causalLM checkpoint available online, it would be nice if there is a way to
use small amount of compute to bake these missing abilities into existing LMs while preserving its
original learned abilities.

In this project, we take an existing Llama2-7B checkpoint and continue pretraining it using the UL2
objective for around 0.2% additional data to get Llama-UL2-7B. We show that adapting Llama2-7B
with UL2 objective gives it the capability of doing text infilling despite only trained for a relatively
small amount of data. Llama-UL2-7B also showed emergent task performance such that it even
outperformed Llama2-13B (2x of its size) on some challenging tasks.
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3 Related Work

3.1 Large Language Models

Language Models, nowadays usually built using the Transformer architecture (Vaswani et al., 2023),
has gained big success in the NLP area. Researchers have found that these transformer models scales
up easily, providing promising task performance while maintaining reasonable hardware utilization.
As a result, we are seeing the size of these transformers blowing up from 117M GPT-1 (Radford
et al., 2018) to (rumored) 1.8T GPT-4 (OpenAI, 2024). While some of the largest and most powerful
LLMs remain closed-source, some organizations have decided to open-source their LLMs in various
sizes, such as Llama and Mixtral (Jiang et al., 2024).

3.2 Emergent Abilities

Researchers have found that new behaviors arises while scaling up language models. For example,
the GPT-3 (Brown et al., 2020) paper found that when scaling LLMs to 175B, the model gains the
ability to do few-shot learning by leveraging examples from the input without any weight updates.
These phenomenon is later referred to as emergent abilities, which Wei et al. (2022b) defined it as
"abilities that are not present in smaller models but as present in larger models." Usually, the classical
way to get such behavior is by 1) increase its size, 2) increase the amount of data, 3) increase the
amount of compute. Here we show that a fourth way to get emergent abilities is by continue training
the model with a different objective.

3.3 Causal Language Modeling

Causal Language Modeling, denoted as the causal objective in this paper, is the most common way to
do language modeling nowadays. It models the dependencies of the tokens by only allowing tokens
to attend to tokens on their left, resulting in a lower triangle attention mask, and every position in
the transformer outputs a conditional distribution of P (xt|x<t). Pretraining causal language models
works by maximizing the log likelihood of the token sequences in the dataset, which are possibly
curated raw text in the wild. As mentioned in the introduction, even though this objective fits the
definition of the language modeling task (predicting the next word from previous words), it still has
several limitations. For example, in most use cases of language models, the model is usually given a
prompt and is expected to generate text conditioned on the prompt. Since the prompt is given but not
generated by the model, the model could acutually utilize bidirectional information when encoding
the prompt. This is not possible in causal LMs because of the lower triangular attention mask. Instead,
it can only utilize unidirectional information in the prompt as if it is generating the prompt as well.

3.4 Prefix Language Modeling

We know that an encoder-decoder transformer architecture such as T5 (Raffel et al., 2023) is an easy
solution to the above limitation, where the encoder transformer considers bidirectional information of
the input prompt and the decoder transformer considers unidirectional information when generating
the response. But can we achieve a similar effect on decoder-only architectures? The answer is to
use prefix language modeling, which emulates an encoder-decoder architecture using a decoder-only
transformer. Prefix language modeling combines a fully visible attention mask (encoder) with a
causal attention mask (decoder) to ensure that the prompt tokens can attend to any other prompt
tokens and the generated tokens can only attend to the previous tokens (See Figure 1).

3.5 Continued Training

Continue training a language model is uaually referred to as finetuning. Prior works have shown that
finetuning a language model can substantially improve the model’s performance on downstream tasks.
For example, FLAN (Wei et al., 2022a) performs instruction finetuning on an LM using a collection
of tasks and found that it improves the model’s performance on unseen tasks. Another method called
LoRA (Hu et al., 2021) freezes the base model and inject trainable adapters to finetune the model,
resulting in reasonable performance with less memory footprint. However, these finetuning methods
usually require additional dedicated dataset that are relevant to downstream tasks. We denote our
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Figure 1: Attention masks of different model types. The input and output of the self-attention
mechanism are denoted x and y respectively. A dark cell at row i and column j indicates that the
self-attention mechanism is allowed to attend to input element j at output timestep i. A light cell
indicates that the self-attention mechanism is not allowed to attend to the corresponding i and j
combination. (Raffel et al., 2023)

method as continued pretraining so as to differ from the general continued training, because our
method works on any pretraining dataset and can therefore be seen as second-stage pretraining.

4 Approach

4.1 Model Architecture

We use the standard Llama2-7B architecture. It is a decoder-only transformer model with RoPE
embeddings (Su et al., 2023), RMSNorm (Zhang and Sennrich, 2019), and swiGLU activation
(Shazeer, 2020). More details can be found in Table 1

hidden size 4096
intermediate size 11008
sequence length 4096
# attention heads 32
vocab size 32000

Table 1: The Llama2-7B architecture details.

4.2 UL2 Objective

The UL2 objective builds upon the prefix language modeling idea. It preprocesses data by adding
noise and asking the model to denoise. To make the objective more robust, UL2 defines a mixture
of denoisers such that each denoiser has a different characteristic, ranging from span corruption
to simple causal generation. Our approach follows the UL2R (Tay et al., 2022) setup, using the
following 3 types of denoisers. See Appendix A.1 for more details for each denoiser’s configuration.

• R-Denoiser The regular denoiser is the standard span corruption task introduced in (Raffel
et al., 2023).

• X-Denoiser The extreme denoiser performs span corruption in a more aggressive manner,
either by corrupting longer spans or by corrupting short spans with higher probability.

• S-Denoiser The sesquential denoiser resembles the simple causal generation by only cor-
rupting one span that always ends in the end of the sequence.

For every input data, we randomly sample a denoiser based on the mixture weights and use that
denoiser to corrupt the data. To enable different prompting mode, we add a task token corresponding
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to the denoiser type to the beginning of the sequence. At the end of the sequence, we also add a
special sentinel token "<sentinel_0> to signal the end of prompt and start of generation. A good
mathematical intuition in this approach is that given n raw tokens from the dataset, assume µ is the
average span length, r is the corruption rate, the number of tokens after UL2 preprocessing is a fixed
numbeer of n(1 + 2r

µ ) (see Appendix A.2 for derivation of this equation).

Figure 2 has some visualizations on how the data is preprocessed by the mixture of denoisers. By
using a mixture of these 3 denoisers, we prevent the model from only learning to do text infilling, and
ensures that it preserves its ability to do causal generation.

As it is a prefix language modeling task, in addition to the prefix attention mask, we use a loss mask to
mask out the input token loss and only use the cross entropy loss in the output portion to do gradient
descent.

We chose to use the UL2 objective to do continue pretraining because: 1) It is a prefixLM objective
which considers bidirectional information in the prompt, which is better than unidirectional informa-
tion in causalLM, 2) it seamlessly bakes in text infilling capability to the model during training, 3) it
preserves the ability to do causal text generation and 4) the model’s previous knowledge learned from
causal pretraining could potentially help UL2 continue pretraining because the objectives are similar
(text generation).

Figure 2: Mixture of denoisers for training UL2. The i-th greyed out token span replaced by a
single "<sentinel_i>" token and the true corrupted tokens are shifted to the output following their
corresponding sentinel token. (Tay et al., 2023)

5 Experiments

5.1 Data

We chose to use the OpenWebText dataset (Gokaslan and Cohen, 2019), which is an open-source
corpus that contains web contents from URLs shared on Reddit with at least 3 upvotes. We’ll use this
dataset to perform causal generation and span corruption tasks. When using UL2, we will preprocess
the dataset using the mixture of denoiser to get inputs and outputs as in Figure 2.

5.2 Baseline

For baseline, we use the Llama2-7B architecture with its pretrained (non-finetuned) checkpoint
released by Meta in Huggingface1.

5.3 Evaluation method

For evaluation we mainly evaluate its natural language understanding ability as well as some emergent
abilities.

To evaluate natural language understanding, we used two common benchmarks:

1https://huggingface.co/meta-llama/Llama-2-7b-hf
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• Boolq (Clark et al., 2019): a yes/no question answering task to evaluate reading comprehen-
sion. Each example is a triplet of (question, passage, answer (yes/no)).

• Piqa (Bisk et al., 2019): a question answering task with binary options to evaluate physical
commonsense reasoning.

To evaluate emergent abilities, we used four tasks in the BigBench emergent suite (BBES) (bench
authors, 2023):

• geometric shapes: This task evaluates visual reasoning by testing the model’s ability to
infer the shape given an SVG path.
("<path d="M 38.35,49.41 L 31.18,9.15"/>" ⇒ "triangle")

• navigate: This task evaluates spatial reasoning by testing the model’s ability to predict if an
agent is back in its original position after a series of moving commands.
("Take 1 step. Take 2 steps. Take 3 steps. Turn around. Take 6 steps. Turn left." ⇒ "True")

• snarks: This task tests if the model can detect which one of the two statements is sarcastic.
("(a) Concrete plates. Very beautiful. (b) Stained-glass plates. Very beautiful." ⇒ "(a)")

• understanding fables: This task tests if the model can understand the moral of stories.
("Some storks chose a field newly sown with wheat as their new feeding ground. The owner
of the field, for a while, scared them away by waving an empty sling. Once the storks found
out that the sling was empty, they started to ignore the farmer’s threats. In response, the
farmer charged the sling with stones, killing dozens of the birds in quick succession. What
is the moral of this story?" ⇒ "If words suffice not, blows must follow.")

Due to limitations in compute, all of the above benchmarks are zero-shot multiple choice questions
and the performance are measured by accuracy. We determine the chosen option by finding the option
with the largest likelihood given the question

L(option(i)|question) =
len(option(i))∏

k=0

P (option
(i)
k |option(i)

<k, question)

chosen option = argmax
i

L(option(i)|question)

Although in practice this is usually done in log-scale (picking the option with the maximum log
likelihood, which can be easily calculated by F.log_softmax(model(inputs).logits).sum())

5.4 Experimental details

We take the official Llama2-7B checkpoint (trained with 2T tokens using causal objective) and
continue training it using UL2 objective. We used a cosine annealing learning rate from 10−4 to
10−6. We use a batch size of 256 and sequence length of 4096 and trained the model for an additional
4000 steps, resulting in a total of 256× 4096× 4000 ≈ 4 billion tokens, which is roughly 0.2% of
the 2T pretraining tokens reported by Meta. It took around one day to finish the training. The training
runs FSDP (Zhao et al., 2023) using 64 TPUv3 chips. The resulting model is called Llama-UL2-7B.

To make comparisons, we also continued training the official checkpoint using causal objective on
the same dataset for the same number of tokens (2B).

To understand the synergy between the causal objective and the UL2 objective, we trained a Llama2-
7B from scratch using causal objective for 500M tokens, taking 5 evenly-spaced checkpoints during
training and continue training them using UL2 objective for 50M tokens (extra 1% compute).

5.5 Results

5.5.1 Training perplexity

We first look at the synergy between causal pretraining and UL2 continued training. In Figure 3,
we can see that pretraining using causal objective helps future UL2 training. The more tokens the
model is pretrained using causal objective, the lower its training and validation loss is when continue
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training using UL2 objective. Note that here the training loss is the UL2 loss, which decreases during
training. The validation loss is the causal loss, so there is a slight increase during training.

Figure 3: Training and validation loss of UL2 continue training from 5 evenly-spaced checkpoint
after causal pretraining. Model was trained for 100 steps using a batch size of 256 and a sequence
length of 2048 (consumed ∼50M tokens).

However, if we train the model for longer, the causal validation loss would start to decrease as well.
In Figure 4, when continue training from the official checkpoint for 4000 steps, we can see that the
UL2 validation losss decreases together with the UL2 training loss, and the causal validation loss
also goes down in the course of training. This suggests that the UL2 objective can also benefit causal
generation performance.

Figure 4: Training and validation loss of UL2R continue training from meta-llama/Llama-2-7b-hf.
Model was trained for 4000 steps using a batch size of 256 and a sequence length of 4096 (consumed
∼4B tokens).

5.5.2 Big-Bench results

We show the results in the 4 chosen BBES tasks comparing multiple models in Figure 5. We marked
the performance of random guessing for each task, which is simply (1/# options). In Appendix
A.3, we also include the accuracy scores from Llama2-13B just to see how much does model scale
matters in these tasks.

We observe that Llama-UL2-7B has gained emergent abilities by getting a significantly higher score
than other models in some of the chosen tasks (e.g. geometric shapes & snarks). Some of the scores
even beats Llama2-13B whose size is almost two times larger. We also see that emergent abilities can
be gained by scaling up the model, as Llama2-13B has significantly outperformed the 7B models in
the understanding fables task. We suspect that this is because the task has a much longer input and
output sequence length, and a larger model is simply better at handling longer sequence even though
they were all trained using the same sequence length (4096) during pretraining phase.
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Although emergent abilities are usually obtained by scaling up model size, the BBES results show
that with negligible amount of compute, UL2 continued pretraining can help the model achieve
similar effect.

Figure 5: BBES results on Llama2-7B with reference to random performance (orange line).

5.5.3 NLU results

We also show results on standard natural language understanding (NLU) tasks Boolq and Piqa in
Figure 6. Here we observe that the performance of Llama-UL2-7B is slightly worse than the baseline
(-2%). We suspect that this is probably because of data quality as the causal continued pretraining run
also has performance degrades similar to Llama-UL2-7B. Since Meta didn’t release the pretraining
dataset for Llama2 models, we cannot run UL2 on the same dataset as what it has been trained on.
OpenWebText is a smaller and possibly lower-quality dataset. Therefore, the evaluation results of
these NLU tasks slightly dropped.

Figure 6: NLU tasks results on Llama2-7B with reference to random performance (orange line)
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6 Analysis and Limitations

One of the key benefits of using UL2 objective is that it not only preserves the model’s ability to do
causal generation, it also injects the ability of doing text infilling to the model. In this section we
show that the model has successfully acquired this new skill.

Prompt:

Steps to make a cake:
1. Prepare Ingredients
<1> with a <2>
3. Preheat oven to <3> for <4>
4. Put the cake into <5>
5. Take the cake out of the oven

Model Output:

<1> 2. Mix ingredients
<2> spoon
<3> 450
<4> 15 minutes
<5> the oven

From this example, we can clearly observe that the model has acquired the skill of text infilling. This
is a very useful ability for use cases similar to the above example. When a user forgets some detail
in a document (e.g. a recipe), it can directly ask the model to fill out the details instead of asking
"What is the second step of making a cake", which could be ambiguous can would require more
sophisticated prompting technique to let the model know the context of the recipe.

We also analyzed certain failure modes and limitations of UL2 continued pretraining. One limitation
is that we don’t have precise control on how many tokens the model will fill in the blank. In Appendix
A.4, we prompt the model with some simple sentences expecting it to only fill in one word, but the
model fills in a reasonable longer phrase instead. In future work, one could potentially modify the
UL2 preprocessing algorithm to somehow include the number of tokens to fill in the prompt.

Another limitation of our approach is the inefficient utilization of data. When running any kinds
of prefixLM objectives, the prompt tokens must be masked out when computing the loss. This is
especially bad for UL2 because the input has length (1− r) where r is the corruption rate, which is
usually smaller than 0.5. This means more than half of the tokens were wasted because the prompt
logits weren’t used to calculate loss for gradient descent.

In earlier stage of this project, we extract a fixed number of raw tokens from the dataset so that the
resulting number of tokens after UL2 preprocessing is equal to the maximum sequence length (4096)
following Equation A.2 in order to maximize FLOP utilization. This turned out to be problematic
because we observe that the model’s cannot fill in blanks with short prompts (e.g. the cake prompt
above). The only way to let the model fill in blanks is to append around 3000 tokens with around 180
more blanks after our prompt. This is quite surprising and funny to see because this means the model
overfits to the fact that during training it always sees around 186 blanks in the prompt, so it won’t start
doing its job unless there were 186 blanks to fill. We solved this issue by randomizing the extracted
raw tokens length so that the model is able to deal with any prompt length during evaluation.

However, this results in even more waste in FLOP utilization: not only the prompt tokens were
masked out, the pad tokens were also masked out. This could be solved by a technique called
sequence packing which is standard in PyTorch, but not an easy implementation in our training
platform in JAX2. We will leave this for future work as it doesn’t affect model quality (despite being
inefficient)

7 Conclusion

In this project, we show that it is possible to steer a language model by using UL2 objective. Our
approach successfully converted a causalLM into a prefixLM, enabling bidirectional attention when
processing input prompts. We further verify that with negligible additional compute and data, UL2
continued pretraining injects text infilling ability to a causally pretrained Llama2-7B and observe that
the resulting model, Llama-UL2-7B, has emergent abilities on several challenging tasks in BigBench.
Finally, we analyzed two limitations to our approach and proposed potential ways mitigate the issue.
We also left future works to optimize token efficiency using sequence packing.

2https://github.com/stanford-crfm/levanter
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A Appendix (optional)
A.1 Mixture of Denoisers Configuration

Denoiser Mixture Setting

R 0.25 (µ = 3, r = 0.15, n)
S 0.5 (µ = L

4 , r = 0.25, 1)
X 0.25 (µ = 3, r = 0.5, n) ∪ (µ = 32, r = 0.15, n)

Table 2: UL2 denoisers configurations. The last parameter denotes how many spans should be
corrupted.

A.2 Derivation of number of tokens after UL2 preprocessing

# corrupted tokens = nr

# spans =
# corrupted tokens

µ
=

nr

µ

# tokens after UL2 = n+ 2(# spans) = n(1 +
2r

µ
)

A.3 Additional details for BBES results

Model / Pretrained tokens & objective geometric shapes navigate snarks understanding fables

Llama2-7B
4B UL2 0.0390 0.5000 0.5138 0.2169
2T causal 0.0000 0.5370 0.5359 0.1693
2T causal + 4B causal 0.1003 0.4960 0.5414 0.1746
2T causal + 4B UL2 0.1950 0.5180 0.5856 0.2222
Llama2-13B
2T causal 0.0080 0.5000 0.4807 0.3175

Table 3: List of selected BigBench emergent suite (BBES) and corresponding scores
of every model. All results are reported with zero-shot prompting following format
"Q:<question><choices>A:<answer>". For UL2 models, we add special token "[S2S]" at the front
and "<sentinel_0>" right before the answer.

A.4 More text infilling examples from Llama-UL2-7B
Prompt:

He was absent <1> he was sick

Mr. John is a rich person,<1>he is not
happy.

You did<1>in this text infilling task.

Model Output:

<1> from the game because he said

<1> but he is not happy because he
thinks that even though he is rich,

<1> not find any errors. You did not
participate in this text infilling task. Par-
ticipate
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