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Abstract

Previous approaches to text-to-audio generation have focused on using text descrip-
tions to generate entire pieces of music. These approaches to music generation are
not tailored to the needs of actual musical artists, who require high fidelity and
control in the creative process. Recently, a new line of research has emerged that
aids augmentation and assistive functions in symbolic music creation (e.g., MIDI).
This line of research has identified several targeted functions such as transition
building and harmony generation as areas in which Al assistance would be the most
helpful. We build off this research area by augmenting a music infilling model with
natural language input, allowing artists to supplement their creative process. For
our project, we have developed a pipeline through which to train and condition the
performance of an Anticipatory Music Transformer (AMT) on semantic tokens in
various ways, including prepending semantic embeddings onto training sequences
and using a k-means approach to bundle instructions to specific clusters of prompts.
We then conduct an analysis of performance with respect to different sources of
semantic information and these different tokenization schemes, finding that using
coarse historical information after minimal pretraining was the most fruitful to
generate reasonable music with expressive controls.

1 Key Information to include

* Mentor: Bessie Zhang
» External Mentor: John Thickstun (jthickstun @stanford.edu)
 Sharing project: CS129 (Applied Machine Learning)

2 Introduction

Often attributed to Detroit Free Press writer Martin Mull, so goes the famous quote:
“Writing about music is like dancing about architecture” (Brackett, [2023).

While intrigued by the possibility of architectural dance, this project will instead be an investigation of
text controls in symbolic music generation. We are motivated by frequent criticisms in the Al music
community which highlight a discontinuity between the needs of music composers, who work with
discretized symbolic music in the form of MIDI files, and available music generation tools, which
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use the properties of waveforms to immediately generate WAV or MP3 output (e.g., (Agostinelli
et al.| 2023)), (Copet et al.)). In order to assist music composers with their creative process, we will be
modifying the Anticipatory Music Transformer (AMT), a music transformer that offers fill-in and
melody generation capabilities for user supplied MIDIs Thickstun et al.|(2023)). However, the AMT
currently has no way to condition its generation on natural language descriptions, unlike the current
state of the art waveform music models.

To this aim, we have been experimenting with several techniques, including prepending BERT
tokenized semantic information to the model’s input to re-purposing placeholder tokens in the model
to encode semantic information and more recently using k-means to assign text prompts to common
categories of music descriptions. These choices help us better understand a fundamental dilemma in
text-to-music models, best summarized by the following two research questions:

1. What is the proper balance of semantic to auditory information in a multimodal model?

2. What kinds of semantic information are helpful in training these models (e.g., instrument-
based captions vs information about the artist)

3 Related Work

We begin with a discussion of common approaches in text-to-waveform music generation. We then
introduce the AMT as a symbolic music model with impressive performance but missing human
controls. Our project with synthesize both of these perspectives to produce a natural language
supplement to the AMT.

3.1 Text-To-Waveform Music Generation: MusicLM

Recent work in high fidelity text-to-waveform music generation has been heavily inspired by the
achievement that was Google’s MusicLM by |Agostinelli et al.| (2023)). This architecture relies on
SoundStream (Zeghidour et al., 2022) to encode acoustic tokens that represent the final audio, w2v-
BERT (Chung et al.| [2021) with a k-means variant creates the descriptive captions for the text during
training (semantic tokens), and MuLan (Huang et al.,|[2022)) provides the joint text-audio embeddings
that condition the semantic and acoustic modeling structures. Similar to how Borsos et al.| (2023) in
AudioLLM generates a hierarchical set of tokens (semantic tokens for context, coarse acoustic tokens
for general structure of the audio, and fine acoustic tokens to add depth to the music), MusicLM uses
MulLan to generate RVQ audio embeddings which are then used to train a model that maps MuLan
audio tokens onto a convolution of the k-best w2v-BERT generated captions. The MuLan audio
tokens and the semantic tokens are then fed into a second block, which converts a combination of the
MuLan audio and semantic tokens into encoded SoundStream audio tokens, which are ultimately
decoded by SoundStream to become the final audio output. Using a Vision Transformer, an existing
music piece’s spectrogram can be converted into an input that can be paired with a text description
to feed MusicLM’s generation forward, thus allowing the model to handle text input as well as
simultaneous audio and text input.

MusicLM, MusicFX are all publically available to interact with on Google’s Al Test Kitchen. After
experimenting with the model for some time, it is clear that the outputs often default to a similar
"pop" style, they are not able to be easily edited on a track level, and they cannot be exported to
other music editing software. It is for these reasons we began to experiment with discretized and
controllable symbolic music generation.

3.2 Symbolic Music Generation: Anticipatory Music Transformer (AMT)

Symbolic music generation is the generation of codes that can be read by music production software
and played using a digital soundfont. The most common symbolic music encoding is MIDI. Although
popular throughout the pre-transformer era of music generation, and often applied to commonly
transcribed Bach chorales, MIDI continues to be the language in which composers make music but is
neglected by waveform-based models that rely on the waveform itself to condition music generation.

The Anticipatory Music Transformer (AMT) by [Thickstun et al.| (2023)) is a GPT-2 based model that
is trained to unconditionally generate MIDI-encoded music, fill in gaps between musical phrases,
and provide accompaniment to an existing melody. After encoding notes into (ONSET, NOTE,
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DURATION) triplets, these MIDI events are fed into a model that produces logits representing the
next most likely note (a group of (ONSET, NOTE, DURATION) tokens representing a single auditory
event). The disadvantage of this method relative to the waveform models, however, is there is no
current support for text controls. While the model generates tonally "correct” music with reasonable
harmonies and instrument selection considering prior and future events, there is no way to condition
the model’s generation based on the mood, instrumentation, or context of the song. Using the AMT
tokenization scheme, we will both modify the tokenization to include semantic tokens and finetune
existing AMT models to integrate semantic conditioning.

4 Approach

Our approaches can be summarized as follows:
1. Training a GPT-2 model from scratch using additional semantic tokens

2. Training a GPT-2 model from scratch using a k-means approach to encode semantic infor-
mation

3. Finetuning an existing AMT checkpoint using a k-means approach to encode semantic
information

All of the models we have trained adhere to the standard parameters of a GPT-2 “small” model: that
is, inputs are 1024 token vectors, hidden layers are of size 768, there are 12 layers, and there are
12 attention heads. To perform the language modeling step, we have an additional linear layer with
weights associated with the input embeddings. Our baselines will be an evaluation of the perplexity
of the generation (elaborated upon in Section 5.2.2) in comparison to the available scores for small
AMTs. Tokenization and training was achieved by making modifications to the Anticipation GitHub
Repo. To finetune the existing AMT, we use the small AMT model trained for 800k steps, then add
additional tokens as needed by initializing this linear layer with random additional weights associated
with tokens in the expanded vocabulary.

Training a GPT-2 model directly using semantic tokens was largely unsuccessful, namely because
finetuning existing AMTs after altering the token structure lead to malformed music tokens. Thus,
this approach was quickly abandoned after promising results were achieved for early k-means based
approaches.

Our k-means approach aimed to semantically cluster text data paired with our MIDI dataset entries
into some set of k clusters. In order to do this, we aimed to implement a text vectorization scheme
for the scikit-learn k-means algorithm which would allow us to capture as much semantic content as
possible from our text sources.

This k-means approach allows us to insert one potent semantic token into the AMT architecture. In
the sequence of 1024 auditory tokens, there is one token left unused by note events. We then approach
fine-tuning by substituting this padding token with a k-means cluster for all training examples. We
then modify the AMT music generation procedure to classify a user’s text input into a cluster and
prepend it to an existing input token sequence. The result is a version of the AMT that supports
all of the music generation capabilities of the original model (from-scratch generation, infilling,
accompaniment generation) with additional control provided by text input.

We believe this approach has several benefits, namely that it allows for semantic controls after the
model undergoes a period of pre-training on a variety of music. The model first learns music patterns
generally, and then it learns slight deviations to these patterns after being heavily conditioned in
respect to our semantic information. Selfishly, the simplicity of this modification allowed us to focus
our efforts on analyzing sources of high quality data and experimenting with hyperparameters to
most appropriately balance musical quality and reponsiveness to semantic controls. Additionally,
success with a small number of clusters on a small amount of training steps would allow us to make
preliminary claims about the types of text that are appropriate for training a semantic music control
model with significant changes to the tokenization scheme.
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5 Experiments

5.1 Data

We believe that there are other types of rich textual information that are useful to conditioning a music
model’s performance outside of strict audio captions, which are short descriptions about various
aspects of a song. So, rather than taking the MusicLM approach and using short, captioned clips like
MusicCaps (Agostinelli et al., [2023), or the base AMT approach using the large number of short
clips from recognizable songs in the Lakh MIDI dataset (Raffel, Colinl 2016), we focused on finding
contextual data that mirrored how reviewers and musicians described these songs in detail. Using
the MetaMIDI database by Ens and Pasquier| (2021), we were able to link a MIDI recording to its
MusicBrainz identifier, where we could access information about the song’s name, artist, year of
recording, and more. We used this information to scrape textual data about the relevant songs on
Wikipedia. We also used the same approach with Pitchfork, a music review website which we hoped
would provide richer semantic context about the music. We prioritized descriptions specific about
the relevant songs, but we also included general information about the artist if the initial searches
did not yield any data. This gave us ~17,000 MIDI-Wikipedia pairs and ~4,000 MIDI-Pitchfork
pairs. Unfortunately, we were not able to find as much data from Pitchfork as we did with Wikipedia,
which might have affected our ability to train on the data.

With these pairs of semantic and acoustic information, we were able to create training examples
by tokenizing each note into a triplet of (TIME_ON, NOTE, DURATION) triplets, then prepend
semantic tokens to get input vectors of length 1024 to feed into a GPT-2 model. The output of the
model is a set of logits that can be used to predict the next note in the sequence by sampling a token
from the most likely time, note, and duration intervals of the vocabulary using nucleus sampling
(Holtzman et al., [2020).

5.2 Evaluation method

There were two phases to our evaluation. Because our model relies on k-means token clustering,
we needed an independent evaluation scheme for these clusters. This allowed us to select an ideal
k-means cluster set for our downstream transformer. We then evaluate this transformer model taking
the clusters as given.

5.2.1 K-means Evaluation

For our k-means models, we fed our semantic information into a base GPT-2 model, extracted the
final hidden layer activations, and used these as inputs to a k-means algorithm with a variety of
clusters. We evaluated our k-means clusters with silhouette scores, which is given by
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where s(7) is the individual silhouette score for point 4, (%) is the average distance from point i to
other points in its assigned cluster, and b(z) is minimized over all clusters as the smallest average
distance from point ¢ to points in a different cluster. Thus, .S is the total silhouette score for a cluster
assignment over IV data points. The range of S is from —1 to 1, where a high score is a better score
and indicates that a data point is well-placed. We performed a hyperparameter search over the number
of clusters and chose the value of %k that maximized the silhouette score while still featuring clusters
of a reasonable size. The results of this search are listed below.

In general, we aimed to keep the number of clusters as low as possible in an attempt to enhance
our tokenization and training process and avoid overfitting. At the same time, we aimed to select
relatively high silhouette scores and relatively low standard deviation. This led us to we choose the
k = 128 model for Wikipedia text data and the £ = 256 model for Pitchfork text data, both of which
approximately satisfy our requirements for more effective downtream transformer training.



Table 1: Silhouette Scores for Different Table 2: Silhouette Scores for Different

K-values (Wikipedia) K-values (Pitchfork)

K-value Silhouette Score Mean SD K-value Silhouette Score Mean SD
8 0.8047 2245 3353 8 0.2813 498 259

16 0.8154 1123 2588 16 0.2476 249 146

32 0.8169 561 1901 32 0.2597 124 73

64 0.8318 281 1370 64 0.3336 62 41

128 0.8649 140 978 128 0.4691 31 24
256 0.8997 70 695 256 0.6149 16 18
512 0.9392 35 493 512 0.7778 8 13

5.2.2 Model Evaluation

For all of our models, we calculate the perplexity of our model when evaluated on the training set
so they can be compared to the original AMT. This is done by individually calculating the average
cross-entropy loss for each kind of token (L; for the onset tokens, L4 for the durations, and L,, for
the notes). This gives us an overall event loss L, = L; + L4 + L,,. To get each perplexity, simply
calculate ppl(z) = exp(L,) for x € {t,d,n, e}. In addition to these perplexity scores, we include
some sample generations to compare the quality of the generation.

For more qualitative evaulations and examples, see the Analysis section.

5.3 Experimental details

To form our k-means clusters, we tried an ensemble of vectorization approaches, including TF-
IDF, Gensim Word2Vec, BERT last hidden state embeddings, and finally, GPT-2 last hidden state
embeddings. TF-IDF, Word2Vec, and BERT approaches, though computationally quite fast, were
approximately an order of magnitude worse in terms of silhouette scores than the GPT-2 approach.

After a few pilot models run on a base GPT-2 model, we finetuned several small AMTs for 2000
steps using a learning rate of 3E-5. Information on the size and number of training steps for each
model is in the "Results" table (Table 3).

5.4 Results

The perplexity values for each model we trained are listed below. K-means data sources are indicated
by “PF" for Pitchfork reviews and “Wiki" for Wikipedia articles.

Table 3: Evaluation Results

Model Name Params Steps ppl(e) ppl(t) ppld) ppl(n)

AMT Small (100k) 128M 100K 14.9 1.59 3.90 2.40

AMT Small (800k) 128M 800K 12.4 1.52 3.64 2.24
Wiki K-means 41M 2K 5094.37 4.881 14.197 73.512
PF K-Means 41M 2K 2437419.516 141.776  29.654 579.76

Wiki K-Means Finetuned (800k)  128M  800K+2K 11.864 1.502 3462  2.281
PF K-Means Finetuned (800k) 128M  800K+2K 931.919 2.959 10.5  29.992
Wiki K-Means Finetuned (100k)  128M  100K+2K 12.827 1.526 3598  2.336
PF K-Means Finetuned (100k) 128M 100K+2K 14.999 1.524 3.763 2.615

Preliminary results indicate that the Wikipedia semantic tokens were much more effective than
the Pitchfork tokens, which surprised us. In fact, when finetuning the 800K AMT, performance
degraded significantly when Pitchfork data was used, while further training with the Wikipedia dataset
demonstrably improved the overall quality of the music. There are many possible explanations for
this, including that the Wikipedia articles were often much longer and featured peer-edited phrasing
whereas the Pitchfork reviews, while using more musically descriptive language, were shorter and the
product of a single writer. This prompts additional investigations into the training of music models:



our project shows that the historical significance of the song and its artists could be influential
in the production of high quality music from text.

6 Analysis

With respect to our k-means approach, we performed an inspection of how user song requests are
clustered. We ran the NLTK top 10,000 English words through our GPT-2 tokenizer and extracted
the final layer embedding to feed into our k-means model as designed. A cursory glance at the result
of this experiment showed that there was a degree of randomness associated with the clustering. We
attribute this in part to the fact that our k-means model was trained on large documents, and that
individual words, taken out of context, do not possess clear semantic value in the same sense as the
data on which we trained. We instead fed in a short list of example user song request prompts through
our cluster assignment pipeline to test whether the clusters, in practice, seemed to aggregate around
musical themes. We were encouraged to see that, for the most part, requests with markedly different
themes were sent to different clusters; for example, “Epic orchestral soundtrack for a movie" was
sent to cluster 44, while “Reggae-inspired beach vibes" was assigned to cluster 75. We then tested
whether requests which were approximately synonymous were sent to the same cluster. We found
that a set of 15 jazz-like requests were sent to 8 different clusters. Several of the clusters with multiple
assigned prompts did appear to aggregate around other key descriptions, such as “chill", “mellow",
and “relaxed", but strangely, the clusters which held prompts with these key words were themselves
distinct. A natural attitude for sorting by music theme would likely place chill, mellow, and relaxed
jazz in the same category, but our model did not accomplish this.

We think that a main reason for this inconsistency in cluster assignment is that the text data which
we trained on was not systematically structured in terms of musical description. The Wikipedia
data is, in large part, historical and not explicitly musical. Though the Pitchfork data was more
refined in this sense, it was still written in terms of critique, which does not necessarily relate well to
artist-side aspects of musicality. In both cases, the training data likely placed a limit on the ability of
our k-means model to accurately capture musical semantic data, even if it did succeed in capturing
other semantic data.

For the most, our clusters do seem to represent thematically similar ideas. Additionally, despite the
average size of our clusters assigned during training being relatively small (average of around 10
examples per cluster, with one outlier cluster with several thousand examples), throughout testing
we achieved assignment to a large variety of clusters. Any text longer than a few sentences gets
classified into the large outlier cluster, suggesting that an additional, comprehensive pre-processing
step which condenses the text inputs may significantly benefit the model’s ability to recognize a
greater variety of genres. This theory is supported by feeding the names of artists in our corpus (e.g.,
John Williams, The Smiths) into our model, and the generations did not readily produce music that
was tonally similar to these artists. While perhaps a failure of our system, we believe this is a positive
effect of the act of using clustering to condition the generation. Because the artist name is only one
token used to find the cluster, it is unlikely for an artist to achieve an entire cluster. Rather, clusters
seem to represent thematically similar ideas. Additionally, despite the average size of our clusters
assigned during training being relatively small (average of around 10 examples per cluster, with one
outlier cluster with several thousand examples), throughout testing we achieved assignment to a large
variety of clusters. Any text longer than a few sentences gets classified into the large outlier cluster,
suggesting a more comprehensive pre-processing step that condenses the text inputs may significantly
benefit the model’s ability to recognize a greater variety of genres.

Moving on to the music generated by the AMT itself, despite the finetuned 800K AMT using the
Wikipedia dataset generating music with a lower perplexity, the music that it generates appears to
be less responsive to the text inputs. For example, prompts that emphasize specific instruments
(e.g., angry guitar, sad piano) are often ignored in favor of producing infilling sections that are most
tonally and thematically similar to the default AMT. The 100K AMT, while producing slightly more
dissonant music at times, experiences greater variation depending on the text prompt even with the
same number of text clusters.

In experiments with long-length music generation (3 minutes or longer), we found mixed results.
we found that after an interval of around one minute of tonally consistent music, the track would
fade out and another seemingly different piece of music would start. When asked to generate "a



song from a British rock group comprised of four men with whimsical undertones", which you can
listen to here, the first minute of the song was a reasonable attempt at this theme, the second minute
featured a furious thirty second drum solo punctuated by several seconds of silence, and the third
was a solemn choir with plodding bongos. Another generation prompted with a description of "The
Cranberries", "an alternative rock group, but incorporated aspects of indie rock, jangle pop, dream
pop, folk rock, post-punk and pop rock into their sound", can be listened to here and features a more
tonally consistent output. Although not the intention of the model, preliminary experiments appear to

support semantically conditioned generation of full length songs of three minutes.

7 Conclusion

We hope that our project emphasizes both the relative simplicity with which reasonable text controls
for symbolic music generation can be achieved and the potential for improvement that exists in
this space. If promising results were achieved by creatively retrofitting an existing architecture on
relatively small datasets and a modest number of training steps, there is great potential for training
symbolic music models with semantic information. In fact, our work has shown that historical and
contextual information may help music models better understand complex concepts like genres and
eras. Rather than training on coarse audio captions or music review data like that from Pitchfork,
biographical information on the track and artist may prove crucial in helping text-to-music models
learn about the tropes that human-generated music relies on.

Our work is limited in that our datasets were collected by greedily scraping publicly available
semantic information from online sources. We did have some quality checks using metrics like
article length, but would have liked to have greater assurance that each text-MIDI pair contained
text that accurately represented the music it was paired with. Additionally, our finetuning steps were
undertaken using a relatively small number of steps relative to the pre-training step (100K vs 2K).
With a larger dataset and more training steps, stronger claims could be made to the effectiveness of
the clusters to encode a representative range of semantic information across a multitude of genres.

Like other music models, our work does not claim to generate music that is representative of all
cultures and traditions. Western music is heavily overrepresented in publicly available computer
music datasets, and our requirement for there to be English language textual information about each
track likely only further biased our dataset toward Western music. Future work would do well to
train in multiple languages and consider methods of including music that is not often written about or
recorded in a way that is meaningful.

In future work, we would consider the possibility of using more tokens in the architecture to encode
semantic information. Additionally, we would consider directly using the activation layer (or a
compressed version of it) to train a new GPT-2 model, which we currently lack the compute and
training time for. It would be relevant to also explore alternative data sources which capture both the
rich sociohistorical data offered by Wikipedia as well as precise musical terminology. Still, this is a
very promising result and another step towards producing a model that augments the workflow of
musicians in a helpful and cohesive capacity.
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