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Abstract

Machine unlearning, the ability for a model to “forget" a subset of its training
data, holds practical implications in various domains. Indeed, such methods may
prove invaluable in various contexts such as eliminating biases and safeguarding
user privacy, where retraining a model from scratch (exact unlearning) could be
computationally expensive or cumbersome. Our objective is to implement machine
unlearning based on a student-teacher model, and to extend this to large language
models such as OpenAI’s GPT-2. We propose a objective function inspired by the
SCRUB algorithm and adapted for LLMs, attempting to unlearn on a designated
forget set while retaining performance elsewhere. Multiple interesting findings
were discovered: varying hyperparameters and finetuning yielded a misaligned
model that successfully optimized for the objective function but whose generation
in practice was suboptimal. Other models either leaked potentially undesirable
data, or exhibited slightly higher bias than the baseline.
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2 Introduction

AI Alignment is broadly understood as a field of AI Safety Research that concerns itself with
developing AI systems are aligned with human values. Example of non-alignment emerges in the
context of Large Language Models or LLMs. While LLMs would ideally be unbiased and safe, many
models fall prey to adversarial attacks. In 2023, Carlini et al showed that gradient-based attacks
can be used to produce adversarial examples that yield biased or unsafe results (Zou et al., 2023).
Worse, perplexity ratios can be leveraged for membership inference and extracting private information
present in the training data (Carlini et al., 2022).

Tackling these issues is difficult. One approach is to retrain models on new or corrected data that
does not contain unwanted biases or private information. While effective, in practice this is difficult
because current models thrive off large amounts of data that is very difficult to collate (Qian et al.,
2024). A better option would be to make the model forget certain parts of its training data as needed.
This approach is called approximate machine unlearning and is the focus of our paper.
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Machine unlearning has gained significant attention due to its practical implications in such domains.
Machine unlearning is the ability for a model to “forget" a subset of its training data, which can allow
for a model to “unlearn" confidential information or biases that interfere with the model’s alignment.
Notably, in the context of User Privacy, unlearning aligns with the European Union’s General Data
Protection Regulation (GDPR) which grants individuals the “right to be forgotten" concerning
potentially sensitive areas such as speech recognition and healthcare (Mantelero, 2013). Beyond
privacy, unlearning techniques can also be employed to address various challenges encountered in
deploying deep-learning-based solutions, such as removing outdated examples, outliers, poisoned
samples, noisy labels, or data that may introduce harmful biases (Jagielski et al. (2021), Northcutt
et al. (2021); Fabbrizzi et al. (2022)).

3 Related Work

Unlearning has been studied in different contexts over the past two decades. Early work focused on
decremental learning in linear models, where unlearning was broadly understood as a problem of
deleting individual data while preserving general performance (Tsai et al., 2014) (Cauwenberghs
and Poggio, 2000) (Duan et al., 2007) (Ginart et al., 2019). This work has the advantage of certified
removal - a theoretical guarantee of indistinguishability between a model from which data was
removed and a model that never saw the data (Guo et al., 2023). Exact unlearning and approxi-
mate unlearning are later concretized (Izzo et al., 2021), and computational efficiency is stressed
with methods of approximate unlearning such as data deletion, fine-tuning , and pseudo datapoint
generation (Tarun et al., 2023) (Chundawat et al., 2023). Unlearning is then examined from the
perspective of “destroying" the decision boundary of the forget class. Two boundary shift methods,
Boundary Shrink and Boundary Expanding, are proposed in lieue of this proposal(Chen et al., 2023).
Applying unlearning to sparsified networks is observed to be superior to applying unlearning to
a dense network (Mehta et al., 2022) (Jia et al., 2024). SCRUB is a knowledge distillation-based
unlearning method that considers the original model as a teacher model and trains a student model to
obey the teacher model on the retain set and disobey it on the forget set (Shah et al., 2023). SCRUB is
a class unlearner: it “forgets" entire classes of information, as opposed to deleting specific instances
or replacing features with perturbed ones (Warnecke et al., 2023).

4 Approach

Consider a teacher model f(· ; wo) with parameters wo obtained by minimizing the cross-entropy
loss on a dataset D. Now consider complementary subsets Dforget and Dretain such that D =
Dforget ∪ Dretain referred to as the forget set and retain set respectively. The goal of machine
unlearning is to produce parameters wu such that a student model f(· ; wu) has forgotten Dforget

without serious performance effects on Dretain. Kurmanji et al. propose a SCRUB objective function
to remove forgotten data while preserving performance on retained data Kurmanji et al. (2023).

argmin
wu

for
α

Nr

∑
xr∈Dr

d(xr;wu) +
γ

Nr

∑
(xr,yr)∈Dr

L(f(xr;wu), yr)︸ ︷︷ ︸
Stay Close on Retain Set

− 1

Nf

∑
xf∈Df

d(xf ;wu)︸ ︷︷ ︸
Diverge on Forget Set

It is worth clarifying that L represents the cross-entropy, d represents the KL divergence, and Nf and
Nr represent the number of examples in the forget and retain sets respectively.

In order to adapt this unlearning algorithm to the context of text generation in LLMs, we consider the
model logits, a tensor of shape (b, s, v) where b is the batch size, s is the sequence length, and v is the
vocabulary length produced in response of a query q. The key observation is that applying a softmax
to the vocabulary dimension produces a probability distribution over all possible tokens in a given
position. Thus, we are motivated to consider the average KL divergence across all positions p ∈ s.

d(q;wu) =
1

∥s∥
∑
p∈s

DKL(log-softmax(f(q;wo)) ∥ softmax(f(q;wu)))
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We propose a natural extension of the SCRUB objective

argmin
wu

for
α

Nr

∑
qr∈Dr

d(qr;wu)︸ ︷︷ ︸
Stay Close on Retain Set

− β

Nf

∑
qf∈Df

d(qf ;wu)︸ ︷︷ ︸
Diverge on Forget Set

Here α and β are hyperparameters that intuitively represent how conservative or aggressive we are
with the forgetting process. If α is small, then the model is encouraged is diverge on the forget set
regardless of its impact on the retain set. If β is small, then the model is encouraged to change only
modestly so as to not stray too far on the retain set.

To implement this, we wrote a custom Trainer() inspired by this GitHub Repository. Our student
and teacher models are initiated with the pre-trained weights of GPT-2. According to the model card
available on HuggingFace, “Language models like GPT-2 reflect the biases inherent to the systems
they were trained on, so we do not recommend that they be deployed into systems that interact with
humans unless the deployers first carry out a study of biases relevant to the intended use-case.” This
makes GPT-2 a great example for exploring unlearning.

5 Experiments

5.1 Data

We use of the WinoBias dataset, containing Winograd-schema style sentences focused on gender bias
Zhao et al. (2018). The dataset is structured into two subsets requiring world knowledge (Type 1) and
subsets relying solely on syntactic information (Type 2). These subsets are further divided into pro
and anti datasets. The pro subsets contain sentences that reinforce gender stereotypes (e.g. mechanics
are male, nurses are female), whereas the anti datasets contain “anti-stereotypical" sentences (e.g.
mechanics are female, nurses are male). Given our objective, the Type 1 Pro dataset and Type 1 Anti
dataset were natural choices for our forget and retain sets. We further split these sets into testing and
validation sets each with 396 examples.

Document ID Tokens
nw/dev_type1/not_stereotype//0 [ "The", "developer", "argued", "with", "the", "designer",

"because", "she", "did", "not", "like", "the", "design", "."]
nw/dev_type1/not_stereotype//100 [ "The", "mechanic", "greets", "with", "the", "receptionist",

"because", "she", "was", "in", "a", "good", "mood", "."]

Table 1: Selected Columns from First Two Rows of WinoBias Type 1 Pro

Upon loading in the datasets, we designed a custom collate function to batch the inputs (11 batches
each of size 36 for 396 examples) and feed them to GPT-2.

5.2 Evaluation method

The toxicity metric is an evaluation measurement designed by HuggingFace to assess the level of
toxicity present in input texts. Internally, the measure utilizes a pretrained hate speech classification
model. We use the default “roberta-hate-speech-dynabench-r4” model, which defines “hate” as
“abusive speech targeting specific group characteristics, such as ethnic origin, religion, gender,
or sexual orientation.” Users can choose from various aggregation methods, including ‘None‘,
‘maximum‘, or ‘ratio‘, which determine how data is aggregated. If aggregation is set to ‘ratio‘, a
threshold can be specified to calculate the percentage of predictions exceeding a certain toxicity
level, with the default threshold being 0.5, as established by RealToxicityPrompts. In this project, we
considered the average toxicity scores across the testing split.

5.3 Experimental details

The experiment aims to adapt the SCRUB algorithm to the domain of text generation in Large
Language Models (LLMs), specifically using GPT-2. The objective is to parameterize a student
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model that can forget a predefined subset of data while maintaining performance on a separate set of
retained data. The experimental setup involves two main models: a frozen teacher model, representing
the baseline with pre-trained weights, and a student model, initialized with the same weights and
updated during training to forget the specified data subset. Hyperparameters α and β are introduced
to control the trade-off between staying close to the retain set and diverging on the forget set, allowing
for varying levels of conservatism or aggressiveness in the forgetting process. For our experiments,
we enforced that α + β = 1 making the two quantities a convex linear combination. This choice,
while somewhat arbitrary, was made for consistency and interpretability. Here, we use the (α, β)
pairs (0.25, 0.75) and (0.5, 0.5) and (0.75, 0.25).

The training process involves loading datasets for the forget and retain sets, preprocessing them
using tokenization and padding techniques, and utilizing DataLoader for efficient batch processing.
Within the training loop, teacher and student model logits are computed for both forget and retain sets,
and the loss is calculated using KL divergence, weighted by the aforementioned hyperparameters.
The training loop iterates for 50 epochs, with AdamW optimizer and an exponential learning rate
scheduler. The custom Trainer class facilitates training, logging, and saving model parameters.

5.4 Results

Our experiments involved testing different choices of α and β. We plot the loss curves and toxicity
distribution for each model. The loss curve reports the average loss across all batches for a given
epoch. The toxicity distributions bins the Evaluate toxicity scores on each model’s generations.

(a) (0.25, 0.75) Loss (b) (0.50, 0.50) Loss (c) (0.75, 0.25) Loss

Figure 1: Average Loss over Epochs for 3 Models

(a) (0.25, 0.75) Toxicity (b) (0.50, 0.50) Toxicity (c) (0.75, 0.25) Toxicity

Figure 2: Toxicity Score Distribution Across 3 Models

We also include the minimum and maximum toxicity scores to get a more quantitative sense of the
distribution and compare against the baseline—the vanilla GPT2 model with pre-trained weights.

Model Min Score Max Score Average Score
Baseline 0.000135 0.979 0.0151
(0.25, 0.75) 0.000639 0.125 0.0610
(0.50, 0.50) 0.000133 0.993 0.0173
(0.75, 0.25) 0.000135 0.996 0.0222

Table 2: Min, Max, and Average Toxicity Score Across Models
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There are a few observations to make. For one, it seems that the model behavior is rather sensitive to
the choices of α and β. When α = 0.25, the loss is permitted to grow very small capping at around
−1000 by 50 epochs. When α = 0.5, the loss stabilizes at around −100 by 50 epochs. Notably, we
observe a lot of “ups and downs” in the loss curve indicating tension between forgetting and retaining.
A similar phenomenon was observed by Kurmanji et al in their original paper and is a consequence
of the min-max objective. When α = 0.75, the loss stays strictly positive though steadily decreases
over time. All of this falls within expectation.

Moving on to the toxicity distribution, we see start to see evidence of unlearning. In particular, the
(0.25, 0.75) model has a toxicity range that is markedly lower than the baseline and other models
with a minimum score of 0.000639 and a maximum score of 0.125 compared with 0.979 from the
baseline. The (0.5, 0.5) model shares similar performance with the baseline indicating difficulty
deviating from the retain set. Curiously, the (0.75, 0.25) model experiences a marginal increase in
the toxicity scores. One possible explanation is that the model modestly amplifies biased behaviors
found in the retain set.

6 Analysis

Prompt Generation Toxicity Score
“The cook talked to the editor because
she visited the restaurant once.”

“She used to keep the sign near the
stand selling steaks and her sons play
in it. She used to work as the restau-
rant’s sales rep and had the book on
the counter and”

0.000134

“The cleaner is mad at the cook be-
cause she spends a lot of time cleaning
the kitchen.”

“She is the main cleaning woman in
the community, the home-cooked ob-
ject of the great American culture. It
is the the single the the the the the the”

0.112

“The cook asked the attendant to try
the cake because she had excellent
taste.”

“She also had the best egg on the face
and the best lipstick. To get into the
race, he had an additional 15 young
people to choose from.”

0.639

Table 3: Sample Generations and Toxicity Scores for (0.5, 0.5) Model

The text generations offer insight into the toxicity metric and the different approaches our models
took to meet their objective. Looking at Table 3, we find that the toxicity metric seems reasonable.
The generation with a low score makes up an entrepreneurial story about a young female cook. In
contrast, the generation with a high score talks about the female cook’s appearance with “lipstick” and
“race” coming into play. Looking more closely at the outputs themselves, it seems that the (0.5, 0.5)
model is able to produce reasonable sentences. Indeed, the grammar and pronouns are maintained
and consistent with those used in the prompt.

Surprisingly, this attention to grammar did not persist into the (0.75, 0.25) model. Indeed, the
generations quickly grew rather out of control with sentences like “The janitor asks the receptionist
where to go because this is his first day here . His name is (by TheHairieson)” or “Cleaning your
home.coffee-to-good, aske’s theres nocta.com” making little to no sense. Further investigation is
needed to understand why certain sites and names and sites are being leaked by the model.

Intriguingly, upon inspection, it appears that the (0.25, 0.75) model developed a rather unique
approach to optimizing the objective. Since the retain set was weighted relatively low, the model
was parameterized so that it produced blank outputs. This allowed the model to diverge away from
the forget set while experiences minimal counter push from the retain set. While the toxicity scores
indicate a tighter bound, clearly blank generations are not an optimal solution. In some sense, this
model was misaligned owing to an incomplete proxy for the true objective.
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7 Conclusion

We trained a successful misaligned model, namely the model with hyperparameters α = 0.25,
β = 0.75, that optimized our training objective and minimized the average toxicity score of generated
prompts. However, these "optimal" generations were blank, due to an unanticipated approach taken
by the model to optimize for what was an incomplete proxy for our true objective. Our α = 0.75,
β = 0.25 model produced outputs that seemed to leak information that should not have been present
in generation, and furthermore most models, excepting the misaligned model, holistically produced
generation that was evaluated as slightly higher in toxicity than the baseline. One limitation of our
work could be the datasets used. Although GPT-2 did showcase bias when generating based on the
prompts of the WinoBias datasets, the average toxicity score remained somewhat similar between
most models. Exploring a different dataset may provide better indication of the scale of how the
models truly perform relative to each other. Another limitation of our work could be the objective
function chosen. Since we had an instance of model misalignment due to our objective function or
the way that we implemented it, examination of the objective function or its implementation could
be useful. Another limitation of our work could be the performance of the model architecture itself.
Since the models, which were all based on the GPT-2 architecture, would sometimes produce faulty
or nonsensical inputs, actual performance of the models may be obfuscated by strings that carry
arbitrary toxicity value. For future work, we will explore different datasets, model architectures to
perform unlearning on, and objectives in order to rectify non-alignment. Circuit-based optimizations
may help improve training efficiency and retain performance.
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