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Abstract

Our aim is to address the challenge of producing overly generic image captions. Despite the
expressive power of language and the adage "a picture is worth a thousand words," image captioning
often falls short in providing rich and descriptive outputs. Our approach involves leveraging the
BLIP-2 model, pretrained on the MSCOCO dataset, as the foundation. We then fine-tune this
base model using the Maximum Likelihood Estimation (MLE) objective to enhance accuracy and
conciseness. Subsequently, we incorporate the Semipermeable Maximum Likelihood Estimation
(SMILE) objective to promote richness and descriptiveness in the generated captions. Finally, we
adopt a hybrid approach, mixing MLE and SMILE into a single weighted average objective to strike
a balance between accuracy and richness in the generated captions. By combining the strengths
of MLE and SMILE, our model achieves significant improvements in caption quality, paving the
way for more nuanced and contextually grounded image descriptions. Our work represents a step
towards improving accessibility and inclusivity in the digital landscape, empowering individuals
with visual impairments to access and enjoy a wide range of visual media.
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2 Introduction

In the realm of accessibility, bridging the gap between visual content and individuals with visual impairments remains a
pressing challenge. While the adage ’A picture is worth a thousand words’ rings true, unlocking these visual narratives
for those unable to see poses significant hurdles. Conventional image captioning methods, while commendable, often
fall short in evoking the vivid imagery and emotional resonance inherent in visual experiences. They tend to produce
descriptions that lack depth and fail to capture the nuances present in images, leaving much to be desired in terms of
accessibility and storytelling (Karpathy and Fei-Fei, 2015; Vinyals et al., 2015; You et al., 2016). Our research endeavors
to address this gap by introducing an innovative image captioning model that transcends these limitations, going beyond
mere description, crafting immersive captions that resonate with readers on a deeper level. Specifically, we explore a
novel objective semi-permeable maximum likelihood estimation (SMILE) that maximizes lexical diversity and caption
length, metrics optimized for richness (Yue et al., 2023), and combine it with the accuracy and conciseness optimization
of traditional image captioning MLE, to create a one-shot model that creates captions that strike a balance between
expressiveness and informativeness. Through our exploration, we aim to not only enhance accessibility but also to push
the boundaries of storytelling at the intersection of computer vision and natural language processing, promising a more
inclusive and engaging experience for all.

Our performance evaluation of the BLIP-2 model, fine-tuned with different objectives such as MLE and SMILE, closely
matched our initial expectations. Notably, the BLIP-2 + SMILE model demonstrated superior performance across various
evaluation metrics, indicating an enhancement in richness and descriptiveness within the generated captions. The SMILE
objective, designed to optimize richness through lexical diversity and caption length, indeed yielded captions that were
richer and more contextually grounded. However, this improvement was accompanied by a slight decrease in CLIPScore,
potentially suggesting a misalignment with the original optimization focus of BLIP-2. Conversely, the inclusion of the
MLE objective led to captions that were more concise and accurate, although perplexity decreased slightly. Despite
this, there was a significant improvement in CLIPScore, indicating better alignment with the visual context. Our hybrid
SMILE + MLE model demonstrated notable enhancements across various reference-based metrics compared to raw
SMILE, striking a balance between expressiveness and accuracy while improving alignment with reference captions.

Through a thorough analysis of model outputs, we observed discrepancies between our model-generated captions and
ground truth captions. MLE-dominant captions prioritized accuracy but lacked specificity, while SMILE-dominant
captions were richer but occasionally hallucinated attributes. These findings underscore the inherent trade-offs between
accuracy and richness in caption generation, highlighting the complexities of optimizing image captioning models for
both expressiveness and precision.
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3 Related Work

Image captioning has been a subject of extensive research in the fields of computer vision and natural language processing.
Early approaches typically relied on handcrafted features and shallow learning algorithms to generate captions for
images. These methods often struggled to capture the semantic complexity and contextual understanding required for
accurate and expressive captioning.

With the advent of deep learning techniques, particularly convolutional neural networks (CNNs) for image processing
and recurrent neural networks (RNNs) for sequence generation, significant progress has been made in the field of image
captioning. Models such as Show and Tell (Vinyals et al., 2015) and Show, Attend, and Tell (Xu et al., 2016) introduced
end-to-end trainable architectures that combined CNNs for image feature extraction with RNNs for caption generation.
These models demonstrated improved performance in generating coherent and contextually relevant captions compared
to earlier approaches.

Subsequent research has focused on refining and extending these architectures to address various challenges in image
captioning. Attention mechanisms have been integrated into models to enable them to selectively focus on different
regions of the image while generating captions, leading to more accurate and detailed descriptions (Lu et al., 2017;
Anderson et al., 2018). Additionally, techniques such as reinforcement learning have been employed to optimize
captioning models for specific evaluation metrics, further improving their performance (Rennie et al., 2017).

Recent advancements in image captioning have also seen the exploration of multimodal architectures that leverage both
visual and textual information for caption generation. Models such as VisualBERT (Li et al., 2019) and UNITER (Chen
et al., 2020), Meshed-Memory Transformer (MMT) (Cornia et al., 2020), and VL-BERT (Su et al., 2020) integrate
pre-trained language models with image features to enhance the understanding of visual context and improve caption
quality.

In reviewing the literature, it becomes evident that while significant advancements have been made in image captioning,
notable limitations persist, particularly concerning the richness and expressiveness of generated captions. The current
state-of-the-art methods fall short in delivering captions that truly resonate with the depth and complexity of the visual
world (Al-Malla et al., 2022; Krause et al., 2017; Yue et al., 2023; Shi et al., 2021). Al-Malla et al. (2022) propose
an attention-based Encoder-Decoder model incorporating convolutional and object features, alongside an "importance
factor" positional encoding scheme, to address quality shortcomings in caption generation. Krause et al. (2017) address
the richness limitations of existing image captioning methods by introducing a model that generates entire paragraphs
to describe images in finer detail, overcoming the constraint of compressing visual content into single sentences. Yue
et al. (2023) propose a new training objective, Semipermeable Maximum Learning Estimation (SMILE), designed to
optimize caption generation models for lexically rich and descriptive outputs. Shi et al. (2021) introduce a novel approach
leveraging natural language inference and directed inference graphs to guide captioning models towards producing more
detailed and informative descriptions.

Inspired by the "semipermeable maximum likelihood estimation" (SMILE) approach proposed by Yue et al. (2023), we
aimed to develop a novel methodology that addresses these presiding challenges directly. Based on our deep examination
of various open-source image captioning outputs, SMILE stood out for its ability to capture the subtle details of visual
content. Refer to Figure 7 in the Appendix for specific examples of SMILE-output samples. Our work marks an
advancement in image captioning, with the promise of enhancing accessibility, enriching storytelling, and pushing the
boundaries of computational understanding of visual content.

4 Approach

We take the novel state-of-the-art BLIP-2 model and pretrain it on our dataset (described in a later section). We then add
MLE to develop a basic fine-tuned model. Then we optimize it with SMILE. Finally, we run a hybrid learning objective,
mixing MLE and SMILE, to refine our model even further.

4.1 Baselines:

We use the new, base version of BLIP-2, a state-of-the-art language and vision model pre-trained on 129M images and
paired captions (Li et al., 2023). BLIP-2 is built on the standard BLIP model (Li et al., 2022), and it further optimizes
performance on three objectives: image-text contrastive learning (ITC), image-grounded text generation (ITG) and
image-text matching (ITM) (Li et al., 2023).

After carefully considering our proposal paper summary on Kreiss et al. (2023), we added one more baseline for
comparison: CapEnrich, the latest descriptive image captioning system (Yao et al., 2023). To review, Kreiss et al. (2023)
provided staunch support for the usage of reference-less metrics in generating image captioning for the visually impaired.
We use this baseline as to have a metric to evaluate descriptiveness through the performance of CLIP self-retrieval, which
uses the CLIP model to retrieve and recall an image along with its caption from a candidate pool, the hard retrieval pool
constructed in CapEnrich (Yao et al., 2023).

4.2 BLIP-2 Architecture

In their paper, Li et al. (2023) introduces BLIP-2, a model comprising of an image encoder and a Large Language
Model (LLM), operating in a two-stage process for vision-language representation learning. In the first stage, a
module called Q-Former bridges the gap between the frozen image encoder and LLM. Q-Former includes an image
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transformer for visual feature extraction and a text transformer for text encoding and decoding. Learnable query
embeddings guide the interaction between the image transformer and frozen image features, with self-attention
layers facilitating query-query and query-text interactions. Different self-attention masks control query-text inter-
action based on pre-training tasks. In the second stage, BLIP-2 optimizes three objectives—image-text matching,

Figure 1: Overview of BLIP-2’s framework (Li et al., 2023)

image-text contrastive learning, and image-
grounded text generation—to encourage rel-
evant visual representation extraction. This
unified framework enables effective interac-
tion between visual and textual modalities for
diverse vision-language tasks.

We choose BLIP-2 as our baseline due to its
state-of-the-art vision and language model-
ing capabilities. One of the key features of
BLIP is its attention mechanism, allowing the
model to focus on different parts of the image
while generating captions (Li et al., 2022).
Additionally, the novel BLIP-2 incorporates

Figure 2: (Left) BLIP-2’s Q-former and (Right) self-attention masking strategy (Li et al., 2023)

the Q-former architecture, enhancing its per-
formance by leveraging structured attention
mechanisms and efficient query processing (Li et al., 2023). This characteristic provides us with a baseline model already
capable of generating accurate and descriptive captions by focusing on relevant image regions and utilizing efficient
query processing. Building upon this foundation, we aim to further enhance captioning performance and richness of
description.

4.3 Maximum Likelihood Estimation (MLE)

MLE has been a standard with many text generation NLP tasks, (Allahyari et al., 2017), (Stahlberg, 2020). Our objective
to maximize the likelihood of a given label when predicting the current word w from some visul content v and a sequence
of given previous words w<. We then define the MLE token-level loss function as:

LMLE = −
|V|∑
j

yj log P̂
V (w | w<, v; θ) (1)

The summation goes through all the words of the vocabulary V where P̂V is the predictive probability distribution over
V and yj is the j-th element of the one-hot label vector. This section details your approach to the problem.

4.4 Semipermeable Maximum Likelihood Estimation (SMILE)

This was proposed by Yue et al. (2023) as being a solution to the conciseness optimizing component of MLE, which is
counter-intuitive to the training objective of producing descriptive image captions. Given a target sequence caption string
D = [w1, ..., wN ], a subset of the vocabulary VD can be formed where VD = {wi|wi ∈ D}. The SMILE token-level
loss function is then defined as:

LSMILE = −
|VD|∑

j

yj log P̂
VD (w | w<, v; θ) , p̂j = softmax (zj) =

exp (zj)∑
k∈VD

exp (zk)
(2)

where P̂VD is the predictive probability distribution over VD and the probability for the j-th word in VD , and p̂j assigns
probabilities over the subset VD instead of the entire vocabulary. Thus in SMILE, we do not get penalized for the
addition of more word terms beyond the ground truth caption as they do not contribution to the denominator in 2. This
allows for longer and richer optimizations as the prediction loss assigned to the label is no longer penalized in the SMILE
objective by the model.

4.5 Hybrid objective: MLE + SMILE

Though SMILE improves descriptiveness of captions, it does this at the cost of accuracy. MLE is accuracy optimized,
maximizing the probability of generating the ground truth caption. Thus, striking a balance, we propose the following
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mixed loss objective:
Lhybrid = λ · LMLE + (1− λ) · LSMILE (3)

where λ ∈ [0, 1]. We will do testing as to find the best λ parameter that strikes the best balance between descriptiveness
and accuracy on this weighted sum combined loss objective.

4.6 Originality and References

Utilizing BLIP-2 as a baseline is original, although the model itself is not (Li et al., 2023). MLE is not original (Allahyari
et al., 2017), (Stahlberg, 2020). Additionally, SMILE is not original (Yue et al., 2023). However, utilizing a combined
hybrid objective is original.

The code for BLIP-2 is not original and can be found here(Li et al., 2023). Yue et al. (2023) did provide starter code
for a SMILE image captioning Hugging Face model, but there was no support for BLIP-2 nor for further tuning, so we
utilized their code base for guidelines as to how to format and brainstorm our approach but had to implement it ourselves.
We had to code up MLE and the hybrid approach ourselves.

5 Experiments

5.1 Data

We use MSCOCO as our dataset (Lin et al., 2014). MSCOCO contains about 120K images, and each image has five
human-annotated captions (Figure 8). We pick this dataset due to its notable feature: detailed pixel-level segmentation
(Figure 9). This attribute, accessible through COCO Explorer, allows us to delve into precise object boundaries, which
are crucial for developing the nuanced understanding required to generate rich and descriptive image captions. "To
ensure a robust evaluation, we adopt the Karparthy split, a widely-used seminal split for image captioning models,
allocating 5,000 images to both the validation and test sets (Karpathy and Fei-Fei, 2015).

Figure 3: Sample image with captions

Figure 4: Sample of pixel-level individual object instance
segmentation

5.2 Evaluation method

In evaluating richness, we employ metrics utilized by Yue et al. (2023), including caption length and lexical diversity
(i.e., the number of unique words). Additionally, we utilize self-retrieval at R@1 and R@5, along with CLIPScore, as
employed by Yao et al. (2023) to assess descriptiveness. These metrics gauge the model’s proficiency in retrieving and
aligning information, ensuring the generation of more contextually relevant and visually grounded captions; the pairing
of the two fosters a more accurate and context-aware description of the visual content, as recommended by Kreiss et al.
(2023). Perplexity is used to measure the language modeling performance, evaluating the model’s ability to predict
word sequences with a focus on capturing and quantifying uncertainty. Furthermore, in later stages of development, we
incorporate BLEU, METEOR, CIDEr, SPICE, and ROUGE metrics to assess the model’s robustness and generalizability
through traditional reference-based metrics.

5.3 Experimental Details

Our experiments can be split into the four phases: (1) pretraining BLIP-2 on MSCOCO, (2) fine-tuning the 1 with the
MLE objective, (3) fine-tuning 2 with the SMILE objective, and (4) fine-tuning 1 on a hybrid objective.

We ran with alpha = 0.4, weight decay = 0.05, initial lr = 3e − 4, lr decay = 0.9, image size = 224,
and max epochs = 20 for pretraining BLIP-2. This phase took the longest, at 18+ hours given that we had to set
batch size = 16 due to memory constraints. We stopped training at around 18 hours. We noticed convergence at
around 3 epochs, so we subsequently set the remaining experiments to max epochs = 5 as to conserve compute. The
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rest of the trials ran around 11-13 hours, so we would run our models overnight and discuss results in the morning.
Training plots for our SMILE model can be found in the Appendix.

5.4 Results

Our results for our fine-tuned BLIP-2, BLIP-2 + MLE, and BLIP-2 + SMILE models largely aligned with our expectations.
were mostly as expected:

Table 1: BLIP-2, BLIP-2 + MLE, and BLIP-2 + MLE + SMILE Performance

Model Cap. Len. Lex. Div. R@1 R@5 CLIPScore PPL

CapEnrich 13.301 1.498 9.487 22.592 79.153 62.345
BLIP-2 10.032 1.404 6.702 16.604 77.312 95.804
BLIP-2 + MLE 10.025 1.400 6.497 16.591 77.552 67.564
BLIP-2 + SMILE 24.431 4.557 10.135 24.146 72.035 94.231
Yue et al. (2023)’s SMILE 22.3 4.5 10.0 24.5 75.0 95.6

Specifically, we anticipated that the SMILE model’s richness optimization component would yield captions that were
richer, more descriptive, and more contextually grounded in the given input picture. This expectation was largely
confirmed, as the BLIP-2 + SMILE model exhibited higher scores in all evaluation metrics except for CLIPScore and
PPL; pretrained BLIP-2 outperformed in PPL by 1.78%, while CapEnrich, pretrained BLIP-2, and BLIP-2 + MLE
models outperformed in CLIPScore by 9.88%, 7.33%, and 7.65%, respectively.

For the lower CLIPScore within the BLIP-2 models, it is possible that there was a misalignment between what the SMILE
training objective aimed to optimize and the effectiveness of BLIP-2’s advanced attention and Q-former architecture.
The pretrained BLIP-2, without further fine-tuning, is already optimized to generate accurate, descriptive, relevant, and
highly contextually grounded captions. The addition of the SMILE objective may have unintentionally introduced some
divergence from BLIP-2’s original optimization focus, potentially leading the model to prioritize richness metrics like
’lexical diversity’ over preserving relevant information crucial for contextual richness. This discrepancy is particularly
evident when comparing the pretrained BLIP-2 to the BLIP-2 + MLE model, where their performance is nearly identical,
with minor variations likely attributable to random factors during dataset splitting. Therefore, we can attribute the lower
CLIPScore of the BLIP-2 + SMILE model to the unintended shift in optimization focus introduced by the SMILE
objective.

We do expect to observe a lower CLIPScore in CapEnrich though, as this metric serves as our upper bound or goal.
CapEnrich is specifically designed to maximize CLIPScore and generate contextually relevant descriptions of visual
content (Yao et al., 2023). However, the SMILE objective, which focuses on optimizing richness through maximizing
lexical diversity and caption length, doesn’t prioritize maximizing context relevance. Therefore, lower CLIPScore in the
SMILE model with this expectation.

The slight decrease in PPL, although marginal at just 1.78% lower than the pretrained BLIP-2, can likely be attributed
to the inclusion of the MLE objective. Our approach involved pretraining BLIP-2, followed by optimization with the
MLE objective, and then further refinement with the SMILE objective. Notably, there was a significant 41.79% decrease
in PPL from pretrained BLIP-2 to BLIP-2 + MLE. Since MLE aims to optimize for conciseness and accuracy, it may
have led to the generation of shorter and more precise captions, potentially at the expense of capturing nuanced details
and uncertainties within the language, leading to a more mechanical sounding caption. This ultimately is probably not
the case, as the caption length and lexical diversity between pretrained BLIP-2 and BLIP-2 + MLE are nearly identical.
Other factors, such as subtle changes in word choice or syntactic structure introduced by the MLE optimization, may
contribute to the observed decrease in perplexity.

Additionally, our BLIP-2 + SMILE ended up outperforming Yue et al. (2023)’s SMILE model, which inspired our
method. While our model exhibits slightly lower performance in CLIPScore and PPL, we consider these differences
negligible given the constraints of our project timeline and the computational resources available.

Table 2: Hybrid Model Performance with Varying λ

λ Caption Length Lexical Diversity R@1 R@5 CLIPScore PPL

1.00 9.7902 1.366 6.526 16.257 75.646 93.686
0.75 11.774 1.089 6.303 17.328 74.153 65.585
0.50 10.578 1.364 6.526 17.444 75.392 65.291
0.25 12.422 1.660 7.248 18.001 74.029 67.120
0.10 12.331 1.851 7.389 17.723 74.424 67.160
0.05 14.379 2.233 8.355 20.282 74.375 72.369
0.00 23.340 4.392 9.791 24.012 73.751 93.599

The table above depicts the performance trend of our hybrid SMILE + MLE model as λ, ranging from 0 to 1, interpolates
between SMILE and MLE objectives. A decrease in lambda leads to richer, more descriptive captions, evident from
increased caption length and lexical diversity. Conversely, an increase in lambda results in more concise and accurate
captions. Metrics such as R@1, R@5, and CLIPScore improve with lower lambda values, reflecting better retrieval and
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alignment, while perplexity (PPL) increases, indicating a decline in language modeling performance. This trade-off
highlights the balance between richness and accuracy controlled by lambda in caption generation.

Figure 5: Trend lines for varying λ

However, there is a notable discrepancy in the trend, regarding perplexity (PPL). PPL initially decreases as λ decreases,
indicating an improvement in language modeling performance associated with richer captions. This decrease aligns
with the expectation that more descriptive captions capture a wider range of language patterns, reducing uncertainty in
word prediction. However, beyond a certain point, PPL starts to increase as lambda approaches 1. This reversal could be
attributed to the increasing influence of the MLE objective, which, while optimizing for accuracy, may tend to produce
more predictable, repetitive language patterns, resulting in higher perplexity.

6 Analysis

For analysis, we incorporate traditional reference-based metric performance as to assess the model’s robustness and
generalizability across broad image captioning tasks. We use our BLIP-2 + MLE, BLIP-2 + SMILE, and BLIP-2 +
SMILE + MLE @λ = 0.5 to produce the following results:

Table 3: Reference-based Metric Performance

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L CIDEr SPICE

MLE 0.7890 0.6375 0.5048 0.3968 0.3095 0.5997 1.3330 0.2378
SMILE 0.3326 0.1692 0.0919 0.0490 0.1828 0.3021 0.0978 0.1260
SMILE + MLE 0.4222 0.2408 0.1442 0.0862 0.2164 0.3711 0.2406 0.1589

The combination of the SMILE + MLE demonstrates notable improvements across various evaluation metrics when
compared to raw SMILE. Specifically, the combined approach yields higher Bleu scores across all n-gram orders,
indicating enhanced alignment with reference captions in terms of word overlap. Moreover, the METEOR score shows
improvement, suggesting that the combined captions are more linguistically similar to reference captions. Similarly,
the ROUGE-L score exhibits enhancement, reflecting improved overlap between generated and reference captions.
Additionally, the slight increase in the CIDEr score indicates improved consensus-based image description evaluation.
Furthermore, the SPICE score demonstrates improvement, highlighting enhanced semantic content in the generated
captions.

It is worth noting that while the SMILE + MLE approach may underperform compared to traditional raw MLE in terms
of some reference-based metrics, this can be attributed to MLE optimizing specifically for accuracy, the objective that
these metrics evaluate. Nonetheless, the observed improvements align with our hypothesis of the addition of MLE to our
objective enhancing these reference-based metric scores, as MLE optimizes for accuracy.

Furthermore, we conducted a comprehensive review of the captions generated by our models. This evaluation encom-
passed examining samples from the MSCOCO dataset to compare the generated output with ground truth captions.
Additionally, we analyzed captions for ambiguous real-world inputs, including both our own images and AI-generated
images.

We reviewed 50 MSCOCO images in total, and we found that the image in Figure 6 particularly emphasized the
primary themes of discrepancies between our model’s outputs and the ground truth captions. In scenarios where MLE
predominates, our model tends to prioritize accuracy by generalizing rather than providing specific details. For instance,
instead of mentioning a baseball field, the model simply describes the men as being "in dirt." Similarly, it offers a generic
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Figure 6: MSCOCO image captioned sample

description of the individuals in the image as "a group of men," rather than providing specific attributes. Despite the
emphasis on accuracy, we observed instances where the model’s output could still be inaccurate. For instance, the model
incorrectly identifies the presence of multiple "baseball bats" in the image, whereas in reality, there is only one.

When SMILE dominates, our model indeed furnishes richer and more descriptive captions. Although the description
of the people remains generic, it specifies the exact count: three. Initially, we questioned the accuracy of our model’s
output, only to discover that there were indeed three individuals in the image upon closer inspection. Notably, our model
even identified the presence of "home plate," a detail overlooked in the ground-truth caption. However, we encountered a
common issue with SMILE-dominant models, wherein they tend to hallucinate attributes to enrich the captions, often
resulting in inaccuracies. In this instance, despite not significantly extending the caption length or lexical complexity,
the model erroneously described the three men as "standing up against each other." Yet, upon further reflection, we
realized that the stance of the players resembled a confrontational posture, suggesting potential over-fitting of the model
to conflict scenarios rather than baseball-specific ones. This observation underscores a limitation of our approach: while
we meticulously analyze image context, there remains a gap in integrating disparate elements seamlessly. Consequently,
despite correctly identifying the baseball context, the model struggled to reconcile the stance of the players with the
presence of home plate and other visual cues.

7 Conclusion

Our study aimed to enhance image captioning by leveraging novel objectives like SMILE alongside traditional methods
such as MLE. Through experimentation, we found that integrating SMILE led to richer, more contextually grounded
captions, albeit with a slight decline in CLIPScore, while MLE improved caption conciseness and accuracy, with notable
gains in CLIPScore. Our hybrid approach combining SMILE and MLE struck a balance between expressiveness and
accuracy, yielding captions that outperformed raw SMILE across various metrics.

Key achievements of our work include the development of a model capable of generating immersive captions that
resonate on a deeper level, contributing to both accessibility and storytelling in image captioning. Additionally, our
findings underscore the importance of balancing competing objectives in caption generation, offering insights into the
complexities of optimizing image captioning models.

However, our study also has limitations. One primary limitation is the potential divergence from the original optimization
focus of the base model when incorporating additional objectives, as evidenced by the slight decrease in CLIPScore
with SMILE. Additionally, while our hybrid approach showed promise, further refinement is needed to fully exploit the
synergies between SMILE and MLE objectives. Moreover, our analysis of model outputs revealed trade-offs between
accuracy and richness, highlighting the ongoing challenges in optimizing image captioning systems.

In summary, our study advances the understanding of image captioning methodologies and offers a promising framework
for future research. By addressing the limitations identified and refining our approach, we can continue to push
the boundaries of image captioning technology, ultimately improving accessibility and storytelling in visual content
interpretation.

8 Team Contributions

Jean built the MLE and SMILE model, and Vicky built the hybrid model. Jean did BLIP-2 pretraining, MLE fine-tuning,
and SMILE fine-tuning training and testing. Vicky did the hybrid model training and testing. Both members wrote up
the report.

References
Mohammad A Al-Malla, Ahmed Jafar, and Nizar Ghneim. 2022. Image captioning model using attention and object

features to mimic human image understanding. Journal of Big Data, 9(1):20.

Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, and Krys
Kochut. 2017. Text summarization techniques: A brief survey.

7

https://doi.org/10.1186/s40537-022-00571-w
https://doi.org/10.1186/s40537-022-00571-w
http://arxiv.org/abs/1707.02268


Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei Zhang. 2018.
Bottom-up and top-down attention for image captioning and visual question answering.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. 2020.
Uniter: Universal image-text representation learning.

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. 2020. Meshed-memory transformer for image
captioning.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for generating image descriptions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3128–3137. IEEE.

Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li Fei-Fei. 2017. A hierarchical approach for generating
descriptive image paragraphs.

Elisa Kreiss, Eric Zelikman, Christopher Potts, and Nick Haber. 2023. Contextref: Evaluating referenceless metrics for
image description generation.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. 2022. BLIP: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 12888–12900. PMLR.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. 2019. Visualbert: A simple and performant
baseline for vision and language.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollar. 2014. Microsoft COCO: Common Objects in Context. https:
//cocodataset.org/#home.

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher. 2017. Knowing when to look: Adaptive attention via a
visual sentinel for image captioning.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and Vaibhava Goel. 2017. Self-critical sequence
training for image captioning.

Zhan Shi, Hui Liu, and Xiaodan Zhu. 2021. Enhancing descriptive image captioning with natural language inference. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 269–277, Online. Association for
Computational Linguistics.

Felix Stahlberg. 2020. Neural machine translation: A review. Journal of Artificial Intelligence Research, 69:343–418.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. 2020. Vl-bert: Pre-training of generic
visual-linguistic representations.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show and tell: A neural image caption
generator.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and
Yoshua Bengio. 2016. Show, attend and tell: Neural image caption generation with visual attention.

Linli Yao, Weijing Chen, and Qin Jin. 2023. Capenrich: Enriching caption semantics for web images via cross-modal
pre-trained knowledge.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. 2016. Image captioning with semantic attention.

Zihao Yue, Anwen Hu, Liang Zhang, and Qin Jin. 2023. Learning descriptive image captioning via semipermeable
maximum likelihood estimation.

A Appendix (optional)

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L CIDEr SPICE

MLE 0.7911 0.6364 0.5032 0.3982 0.3123 0.6003 1.3340 0.2386
SMILE 0.3298 0.1715 0.0927 0.0502 0.1807 0.2996 0.0973 0.1266
SMILE + MLE 0.4244 0.2383 0.1454 0.0868 0.2175 0.3724 0.2398 0.1603

Table 4: Reference-based Metrics for Training
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Figure 7: Descriptive caption samples generated by Yue et al. (2023) using their SMILE-optimized model, paired with
the ground-truth human annotation and default MLE captions

Figure 8: Sample image with captions

Figure 9: Sample of pixel-level individual object instance
segmentation

Figure 10: Progression of loss through training
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Figure 11: Reference-based metric scores through training

Figure 12: Progression of recall scores through training

Figure 13: Progression of caption length through training
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Figure 14: Caption for Figure 1 Figure 15: Caption for Figure 2 Figure 16: Caption for Figure 3

Figure 17: Caption generated for AI generated Image

Figure 18: Caption generated for real-world image
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