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Abstract

Translation of text into its corresponding sign language gloss annotations is a key
step in end-to-end sign language translation, as well as useful for sign language
interpreters. We apply a transformer model to the text to gloss task, providing a
baseline for further applications of transformers on this task. As sign language
translation is a notably low resource translation task, we also explore methods of
augmenting existing datasets to improve translation quality, including POS-tagging
and multilingual datasets. We evaluate our approaches on the ASLG-PC12 and
PHOENIX-14T datasets, achieving improved performance relative to baselines
with multilingual corpus training.

1 Key Information

Mentor: Soumya Chatterjee
Team member contributions: Babbitt built the data loading pipeline, conducted data analysis, and
ran the multilingual corpus training experiment. Mansueto implemented our preprocessing pipeline
and model training/testing in Fairseq and ran the POS-tagging experiment. Both team members
contributed to the report.

2 Introduction

This project will address the task of translating from a sentence in a spoken language to a sentence
in its corresponding sign language gloss (sign language annotation). An example translation for
English/American Sign Language (ASL) gloss is shown in Table 1.

English the commission’s role is limited to checking that there is no manifest error in
the definition.

ASL Gloss COMMISSION X-POSS ROLE BE LIMIT TO CHECK THAT DESC-RE BE
NO DESC-MANIFEST ERROR IN DEFINITION.

Table 1: Example English-ASL gloss pairing from ASLG-PC12 dataset.

The opposite direction, Gloss2Text, has been proven as a helpful step in improving Sign2Text
translation Camgoz et al. (2020b), which suggests that modeling Text2Gloss could potentially
contribute to the development of Text2Sign translation. In addition to being an intermediary step,
translation from spoken language to sign language provides for faster and more accurate interpretation
of spoken languages. A live and accurate Text2Gloss model has the capacity to help sign language
interpreters with live translation, a use case that further supports the necessity of our model.
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Despite the importance of this task, previous work on sign language translation has primarily focused
on translation in the opposite direction (from sign language to spoken language). Camgoz et al.
(2020b) and Yin and Read (2020) have shown transformers to be effective in translating from sign
language to spoken language, but to our knowledge, transformers have yet to be applied to text to
gloss translation. In this paper, we aim to address this gap in the literature by providing a benchmark
transformer for text to gloss translation.

While sign language translation is vitally important, it also presents a difficult neural machine
translation (NMT) task due to the lack of parallel text/gloss corpuses. It is a classic low resource
language translation task, as evidenced by the fact that the majority of previous work in this domain
has been conducted on just two datasets (one English/ASL and the other German/DGS). Due to the
low resources for all sign languages, our approach proposes multilingual corpus training for spoken
language to sign language. We train our transformer on Text2Gloss across multiple languages in
parallel, transferring learning between sign languages in real time.

3 Language Background

ASL and DGS have distinct origins and relationships with their respective spoken languages. Both
ASL and DGS utilize spatial positioning, hand movements, gestures, and facial expressions to
communicate meaning and indicate grammatical nuances Farrugia et al. (2016). These linguistic
features can be expressed in GLOSS through the use of prefixes and indexes. Linguists have yet
to reach consensus on annotating sign language, and any translation is subjective and imperfect.
Given this, it’s important to recognize that a gloss simplifies sign language and can be imprecise.
Gloss attempts to represent with text multidimensional spatiotemporal signals, which presents an
information bottleneck.

ASL emerged with influences from French Sign Language and Martha’s Vineyard Sign Language, but
its development was significantly shaped by interactions with English-speaking culture in the United
States HDI (Human Development Institute) at the University of Kentucky (2023). As a result, ASL
incorporates many signs and expressions from English. Nevertheless, it maintains its own grammar,
syntax, and vocabulary, distinguishing it as a separate language NIDCD (2019).

Unlike ASL, DGS evolved independently from German, and possesses unique grammatical structures
and syntax, establishing its distinctness from German Farrugia et al. (2016). The greater indepen-
dence of DGS from German suggests that translation from text to gloss in German involves more
complexities than for English translation.

ASL word order follows a subject-verb-object structure, whereas DGS employs a subject-object-verb
arrangement Hosemann and Herrmann (2014). English and German both follow subject-object-verb
as well. This implies that although DGS developed independent from German and ASL developed
with influence of English, DGS and German have a more similar sentence structure than ASL and
English. There are also similar and identical signs between ASL and DSG languages, both for
internationally normalized signs and for concepts that rely on positional descriptions Farrugia et al.
(2016).

4 Related Work

4.1 Sign Language Translation

While our task is translation from a language to its corresponding sign language gloss (Text2Gloss),
previous work on sign language translation has primarily focused on the opposite translation direction
(Gloss2Text) as an intermediate step in translating from sign language videos to text (Sign2Text).
Previous findings by Camgoz et al. (2020b) showed that using a gloss as a mid-level representation in
sign to text modeling improves performance on the Sign2Text task. For this intermediate Gloss2Text
model, the authors trained an RNN-based encoder-decoder model with Gated Recurrent Units (GRUs)
and report results on the PHOENIX-Weather-2014T dataset. Yin and Read (2020) also report results
for a Gloss2Text model that uses the basic transformer architecture from Vaswani et al. (2023) tested
on the PHOENIX-Weather-2014T dataset and the ASLG-PC12 dataset. These two sets of results,
while from the opposite translation direction, nonetheless offer a baseline for our Text2Gloss model.
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To the best of our knowledge, the only work on a Text2Gloss model comes from Stoll et al. (2018),
who used an RNN-based encoder-decoder with GRUs. They evaluated their model on the PHOENIX-
Weather-2014T dataset, and achieved performance comparable to that of Camgoz et al. (2020b) for
the opposite translation direction. This RNN-based Text2Gloss model provides a useful baseline for
our transformer Text2Gloss model.

4.2 Low Resource Language Translation

Given the lack of available training data for sign language translation, we look to previous work on
low resource neural machine translation. While advances in NMT often depend on increasingly vast
amounts of data, this subdomain of the field offers techniques for better leveraging small datasets. In
particular, we experiment with two techniques:

4.2.1 Parallel Data Augmentation

Multilingual machine learning models like XLM and NLLB involve translation between many lan-
guages, and the use of language combination in training has specifically been applied for translations
with low resource languages. Grave et al. (2020) and Sennrich et al. (2017) experiment with parallel
text augmentation for low resource languages. They apply augmentation techniques to the existing
dataset in parallel, meaning the transformer processes multiple data samples simultaneously. By
doing so, parallel data augmentation aims to address the lack of diversity and coverage in the training
data that results from limited resources.

We build on parallel data augmentation for low resource languages, experimenting with a new
multilingual corpus training approach for sign language translation.

4.2.2 Part of Speech (POS) Tagging

The incorporation of linguistic features such as POS tags has been shown to improve the performance
of neural machine translation systems (Chen et al. (2018), Pan et al. (2020), Hlaing et al. (2022)).
This syntactic information can be included in the source/target sequences, word embeddings, or
attention mechanisms, and previous work has demonstrated that POS tags can enhance low resource
language translation models. Pan et al. (2020) used a dual-encoder transformer to separately encode
source word sequences and their corresponding linguistic feature sequences, and achieved enhance
performance on Turkish-to-English and Uyghur-to-Chinese translations compared to their baseline
model. Hlaing et al. (2022) appended POS tags to words, and found that adding linguistic features in
this way improved the performance of transformer-based models on low resource language translation.

5 Approach

5.1 Evaluation method

We used BLEU as our evaluation metric and report corpus BLEU and BLEU-1,2,3,4 scores. This
was done with the sacrebleu library.

5.2 Baselines

Model Corpus BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

Camgoz et al. (2020b) Gloss2Text 48.90 36.88 29.45 24.54
Yin and Read (2020) Gloss2Text 48.40 36.90 29.70 24.90

Stoll et al. (2018) Text2Gloss 50.67 32.25 21.54 15.26

Simple Sequence Copy 1.74 16.7 3.3 0.8 0.2

Table 2: PHOENIX-14T baselines.
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Model Corpus BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

Yin and Read (2020) Gloss2Text 92.98 89.09 85.63 82.41

Simple Sequence Copy 22.69 57.4 31.4 16.6 8.9

Table 3: ASLG-PC12 baselines.

We compare to the baselines for Gloss2Text and Text2Gloss established by Camgoz et al. (2020b),
Yin and Read (2020) and Stoll et al. (2018). The Gloss2Text baselines are for the opposite translation
direction, but they still provide a point of reference in evaluating our results.

Additionally, we compare our methods to a naive simple sequence copy baseline, in which we copy
the input text and treat this as the translation. This approach is especially prudent for English text to
ASL gloss and German text to DGS gloss because both involve the same language (i.e. English to
English and German to German).

5.3 Transformer

For our experiments, we trained a 6-layer transformer as proposed in Vaswani et al. (2023), with 8
heads, word embedding size 512, shared encoder-decoder weights and learned positional encodings.
To determine an appropriate number of layers, we trained 2, 4, and 6-layer transformers on the
PHOENIX-14T dataset, ultimately achieving the best performance with 6 layers 4.

Layers Corpus BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

2 10.58 45.5 15.9 6.3 3.3
4 11.20 56.5 19.7 7.8 4.1
6 11.89 60.3 21.6 8.7 5.1

Table 4: BLEU Scores for PHOENIX-14T Transformer with Varying Encoder-Decoder Layers.

We employ cross entropy loss, Adam optimizer, a dropout rate of 0.1, and an early stopping mechanism
with patience 5. We used Fairseq (Ott et al. (2019)) for training and testing, and conducted our
experiments on a Google Cloud virtual machine with 1 x Nvidia Tesla P4 GPU.

6 Data

6.1 English-ASL Gloss Parallel Corpus 2012 Baker (2012)

The ASLG-PC12 dataset is derived from English texts sourced from Project Gutenberg, which have
been converted into American Sign Language (ASL) glosses using a rule-based methodology. This
corpus comprises 81,126 training pairs with 7,324 unique signs and 7,820 unique spoken words. As
it is a synthetic dataset, it may be a simpler dataset for translation tasks.

6.2 PHOENIX-Weather-2014T Camgoz et al. (2020a)

The PHOENIX-14T dataset originates from weather forecast broadcasts aired on the German televi-
sion channel PHOENIX. It comprises a parallel corpus featuring annotations at the gloss level with
translations into spoken German language. It encompasses a vocabulary of 1,066 unique signs and
2,887 unique spoken words. In total, the dataset contains 8,116 sentence pairs, a much smaller corpus
than ASLG-PC12.

The dataset comes from DGS interpretations of daily news and weather forecast airings of the German
public tv-station. This limits the scope of the data to news/weather, and the context to the single
tv-station. As DGS is a low-resource language, our conclusions could be improved/confirmed by
testing on a larger variety of data sources.
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6.3 Preprocessing and Prefixes

Both the ASLG-PC12 and PHOENIX-14T datasets come clean and processed for machine translation
tasks. There are no missing values and the sentences are aligned, meaning they did not require
extensive preprocessing. We applied Byte Pair Encoding (BPE) and Moses tokenization, and used an
80/10/10 train/val/test split with a fixed random seed to ensure reproducibility.

6.4 Data Analysis

Because many signs have the same name as their spoken word, its prudent to consider words that are
identical across sign and text, and therefore do not require word-level translation. BLEU-1 scores
demonstrate a 57.4% overlap between ASL and English words in ASLG-PC12 and a 16.7% overlap
between DGS and German words. These results further confirm the similarities between ASL and
English established by HDI (Human Development Institute) at the University of Kentucky (2023) as
well as the differences between DGS and German established by Farrugia et al. (2016).

PHOENIX has a smaller (relative) vocabulary than ASLG-PC12 and exhibits a much higher rate of
out-of-vocabulary token replacement (tokens not appearing in training) in test and validation splits.
Across the ASLG-PC12 dataset, out-of-vocabulary token replacement was minimal, ranging from
0.0% to 0.0349%. In comparison, the PHOENIX-14T dataset exhibited slightly elevated out-of-
vocabulary token replacement rates, ranging from 0.287% to 0.36% in the text and 0.151% to 0.323%
in the gloss splits. Our model replaces out-of-vocabulary tokens in validation and test splits and
imposes a penalty of 0.5 for the <unk> token appearing in translations.

Dataset Average Word Length Average Sentence Length

ASLG-PC12 Text 4.3436 characters 13.1240 words
ASLG-PC12 Gloss 5.1396 characters 11.7432 words
PHOENIX-14T Text 4.9060 characters 14.7722 words
PHOENIX-14T Gloss 5.6872 characters 7.6613 words

Table 5: Average Word and Sentence Lengths

Table 5 provides average word and sentence length for the datasets and languages. While ASL and
English data is relatively similar in sentence length, sentence length differs greatly between DGS and
German. As established by Farrugia et al. (2016), German and DGS have more differences overall
than English and ASL, and sentence length appears to be one such difference. The large differences
likely contribute to the poorer performance of PHOENIX-14T overall compared to ASLG-PC12.

As noted above, ASLG-PC12 contains 7,324 unique signs and 7,820 unique words, wherase
PHOENIX-14T contains 1,066 unique signs and 2,887 unique spoken words. The difference in
sentence length between DGS and German text likely comes from the higher number of words in the
German vocabulary (i.e. DGS signers require fewer words than German speakers to relate the same
sentence).

In conclusion, ASL and DGS are both low-resource languages, but these datasets are the best available
for text to gloss translation. In particular, German Text2Gloss is challenged by the stark differences
between DGS and German. These differences are reflected in the data, evident in sentence length and
out-of-vocabulary words.

7 Experiments

We organize our experiments into three sections:

7.1 Basic Transformer

In this experiment, we trained and tested our transformer model on the ASLG-PC12 and PHOENIX-
14T datasets separately.
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7.2 Multilingual Corpus Training

In multilingual corpus training, we experiment with developing a sign language agnostic transformer
model. Ott et al. (2019) establish that, for low resource languages, it is often beneficial to lever-
age data in similar but higher-resource languages, especially when they have similar vocabularies
and/or structure. While both ASL and DGS are low resource, we have significantly more data and
significantly better results for ASL via the ASLG-PC12 data. Consequently, we experiment with a
combined language dataset that includes sentence pairs for both translations.

This approach expands on the parallel data augmentation process. Whereas parallel data augmentation
involves generating augmented versions of the original data, we apply this techniques with completely
separate datasets and languages (English/ASL and German/DGS). Our multilingual corpus training
approach injects 8,116 randomly sampled English to ASL gloss sentence pairs from ASLG-PC12
into the 8,116 sentences pairs in PHOENIX-14T in hopes of improving results for German to DGS
gloss translation. We also run a third control experiment where we inject 8,116 English to German
and 8,116 German to English sentence pairs from the WMT 14 English-German Dataset Bojar et al.
(2014).

In order to train a model on two different translations, we provided unique beginning of sentence
(BOS) tokens for each language, which the model was trained to recognize as distinct between the
two. We trained our transformer with the combined dataset, and tested on just German to DGS.

7.2.1 POS Tagging

To provide our model with additional syntactic information, we created POS-tagged datasets from
the original ASLG-PC12 and PHOENIX-14T datasets. We used SpaCy (Honnibal et al. (2020))
to generate POS tags, and appended these tags to our source sequences such that each word was
replaced with "word|POS". We then trained and tested our transformer model on each POS-tagged
dataset.

8 Results

8.0.1 Basic Transformer

Dataset Model Corpus BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

ASLG-PC12 Transformer 93.5 98.0 94.7 92.3 90.0
ASLG-PC12 Simple Sequence Copy 22.69 57.4 31.4 16.6 8.9

PHOENIX-14T Transformer 11.89 60.3 21.6 8.7 5.1
PHOENIX-14T Simple Sequence Copy 1.74 16.7 3.3 0.8 0.2

Table 6: BLEU Scores for ASLG-PC12 and PHOENIX-14T datasets compared to simple baseline.

Our basic transformer model showed significant improvement in BLEU-1,2,3,4 and corpus BLEU
compared to our simple baselines on both datasets, as shown in Table 6.

Model Corpus BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

Transformer 93.5 98.0 94.7 92.3 90.0
Yin and Read (2020) Gloss2Text 92.98 89.09 85.63 82.41

Table 7: BLEU scores for our transformer compared to ASLG-PC12 baseline.

Our model achieves higher BLEU-1,2,3,4 scores than the Gloss2Text model from Yin and Read
(2020), which we believe could indicate that this translation direction (for this language/sign language
pair) is an easier NMT task.

When comparing our model to Text2Gloss and Gloss2Text baselines on PHOENIX-14T in Table
8, we see that it outperforms all baselines for BLEU-1, but under performs on BLEU-2,3,4. Our
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Model Corpus BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

Transformer 11.89 60.3 21.6 8.7 5.1
Stoll et al. (2018) Text2Gloss 50.67 32.25 21.54 15.26

Camgoz et al. (2020b) Gloss2Text 48.90 36.88 29.45 24.54
Yin and Read (2020) Gloss2Text 48.40 36.90 29.70 24.90

Table 8: BLEU scores for our transformer compared to PHOENIX-14T baselines.

transformer and the Text2Gloss model from Stoll et al. (2018) show similar BLEU score distributions
compared to those of the Gloss2Text models. The Text2Gloss models show higher BLEU-1 scores but
lower BLEU-2,3,4 scores than the Gloss2Text models, which we believe is due to the shorter length
of DGS sequences relative to German sequences. Interestingly, this trend is repeated when comparing
our model to the Text2Gloss model from Stoll et al. (2018) – despite significant improvements in
BLEU-1, our model shows significantly worse performance on BLEU-2,3,4, suggesting that our
model struggles to correctly model DGS syntax relative to the RNN-based model.

8.0.2 Multilingual Corpus Training

Dataset Corpus BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

de/DGS 11.89 60.3 21.6 8.7 5.1
de/DGS + en/ASL 14.35 61.5 23.2 10.0 5.2
de/DGS + en/ASL + en/de 10.91 60.1 21.3 8.6 4.9

Table 9: BLEU Scores on German/DGS translation for single and combined datasets.

Multilingual Corpus Training with English to ASL showed a significant improvement in corpus
BLEU and BLEU 1, 2, 3, 4 scores for German to DGS. The results indicate our model improved
from training with both ASL and DSG translations present in the corpus.

The PHOENIX-14T dataset is also relatively small, so doubling the size of the dataset could simply
have caused the model’s improvement. However, we note that adding English to German and German
to English translations did not improve the model’s performance. This further points us to conclude
that ASL and DGS’s similarities can be attributed to the de/DGS + en/ASL model’s improvement.

8.0.3 POS Tagging

Dataset Corpus BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4

ASLG-PC12 93.5 98.0 94.7 92.3 90.0
ASLG-PC12 (POS) 92.4 98.5 94.6 91.7 89.1

PHOENIX-14T 12.4 59.6 21.2 8.8 5.0
PHOENIX-14T (POS) 12.3 58.2 21.1 8.8 4.9

Table 10: BLEU scores for ASLG-PC12 and PHOENIX-14T datasets with and without POS tags.

Our POS tagging experiment reveals marginally better results without POS-tagging – adding POS
information in this way did not significantly affect our results. This suggests that our model was not
only unable to make use of syntactic information provided at the input level, but that the addition
of this information slightly hindered its ability to recognize syntactic patterns (as evidenced by the
associated decrease in BLEU-3,4 scores in particular). This does not entirely rule out the efficacy of
POS-tagging in improving Text2Gloss translation, but indicates that this method of incorporating
syntactic information is not effective. A dual-encoder transformer to separately encode POS-tags as
proposed by Hlaing et al. (2022) could be a logical alternative.
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9 Analysis

All of our PHOENIX-14T models struggled to overcome what Zhang et al. (2020) define as the
repetition problem, in which the same words are mistakenly repeated. Some examples of repeated
word transitions are: “NORD REGION MEHR KUEHL REGION UND UND UND UND UND
REGEN” and “NORDWEST MEHR TROCKEN KUESTE KUESTE KUESTE TROCKEN”.

The PHOENIX-14T dataset has 1,066 unique signs across all gloss sentences. The de/DGS model
produced only 183 unique signs. This lack of vocabulary is evident in our repetition errors. That
being said, the de/DGS + en/ASL model produced 259 unique signs in the DGS gloss translations, an
improvement from de/DGS. Overall, both models struggle to generate words that are uncommon, and
mainly generate the most commonly used words (in this case, weather and news related).

We also noticed an improvement in the de/DGS + en/ASL model in handling sign language specific
components. The de/DGS + en/ASL model appears to better handle spacial and possessive concepts.
Take one sentence pair, a common sign off from German news stations, as an example: "ihnen noch
einen schönen abend und machen sie es gut." (Have a nice evening and do well.). See translations
below.

Translations across Models

Source Gloss

PHOENIX-14T Reference Translation SCHOEN ABEND MACHEN GUT poss-EUCH
de/DGS Translation SCHOEN ABEND MACHEN GUT
de/DGS + en/ASL Translation SCHOEN ABEND MACHEN GUT poss-EUCH

Table 11: Translation Examples

The “poss-“ is the possessive prefix in DGS and “YOU” indicates who the subject is. In this context,
it specifies for "you" (the viewer) to do well. While the de/DGS only model neglected to include
many possessives such as these, the parallel de/DGS + en/ASL showed improvement in inclusion of
these sign language specific concepts.

These qualitative improvements and our quantitative improvement in BELU scores with de/DGS +
en/ASL point to the success of multilingual corpus training for sign languages. Farrugia et al. (2016)
establish similarities between ASL and DGS (beyond them both being sign languages) that suggest
why a model trained in parallel improved our translations to DGS gloss. These similarities include
but are not limited to fingerspelling, spacial descriptors, iconicity (use of icons to represent concepts),
and word prefixes. More sophisticated training on these sign language specific concepts in parallel
likely improved the model’s ability translate from spoken German to DGS.

Much as in Grave et al. (2020) and Sennrich et al. (2017)’s success with parallel data augmentation,
multilingual corpus training aims to increase the coverage of the training data. Because PHOENIX-
14T represents a limited dataset for translation, the addition of ASLG-PC12 sentence pairs increases
the diversity of training data and improves the model’s ability to create meaningful encodings.

10 Conclusion

Our research provides a baseline for transformer for text to gloss translation. Our results justify a
multilingual corpus training approach for sign language translation. Training with the inclusion of the
ASLG-PC12 corpus helped inform PHOENIX-14T translation specifically with concepts particular
to sign languages. This speaks to the similarities between ASL and DGS, and the potential for
multilingual corpus training across all sign languages. While we found success with multilingual
corpus training, this does not rule out other approaches, such as dual encoding of syntactic information,
pretraining, or transfer learning.
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