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Abstract

As the context windows of Large Language Models (LLMs) increase, they have
the ability of accepting entire novels to textbooks as input. The popular Needle in a
Haystack (NIAH) evaluation, while providing a minimum standard for evaluating
this long context performance, falls short of assessing the more important reasoning
and information synthesis capabilities of possible with long context LLMs. Hence,
we introduce the Progressive Needles Test: a simple logic puzzle to evaluate a
model’s ability to reason over, synthesize, and deduce information from multiple
parts of its inputted context. In the Progressive Needles test, we place information
relevant to a query ("needles") within a larger text of thematically related but irrele-
vant information ("haystack"). The needles are logically connected to one another,
necessitating the models to engage in deep reasoning to extract and synthesize
this scattered information to arrive at the correct answer. We generate Progressive
Needles questions for haystacks for both natural language numerical/mathematical
reasoning tasks as well as code tasks, the latter simulating chained function calls
across code bases. We find that LLMs like GPT-4, GPT-3.5, and Mixtal exhibit a
marked decline in performance on the Progressive Needles test when the size of
the haystack is increased and queries are made to require more complex reasoning,
exposing gaps both within current long context benchmarks and weaknesses in
LLM’s reasoning abilities. By fine-tuning GPT-3.5 on the Progressive Needles
tasks, we also demonstrate that learning to solve Progressive Needles tasks leads
to a tangible improvement of ∼2% in performance on the real-world QuALITY
benchmark, suggesting that our task helps enhance LLM reasoning capabilities and
other real world tasks.

1 Key Information to include

• Mentor: Tathagat Verma.
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tion: Primarily designed the poster, ran key Progressive Needles evaluations, ran fine-tuning
experiments, thought of research directions, and wrote the report. Salman’s contribution: Pri-
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marily set up evaluation on QuALITY datasets, ran the fine-tuning experiments, developed
research directions, edited the report, and helped design the poster.

2 Introduction

Recently released advanced large language models (LLMs) have boasted context windows in the
tens or hundreds of thousands of tokens, with some even allowing for million-token inputs (Achiam
et al., 2023; Jiang et al., 2024; Team et al., 2023; Anthropic, 2024). Such advances enable LLMs
to be prompted in-context with the entirety of large texts—such as whole novels, screenplays, and
textbooks, being asked to analyze and reason over this entire corpus of information. However, due to
the novelty of such large context windows and the challenge that comes of gathering enough data to
push these large context models to their limits, there is a lack of methods for evaluating the ability of
these models to effectively use such large corpuses of information when context is passed in.

One of the most popular methods currently used for long-context evaluation is the Needle-In-a-
Haystack test (NIAH). This tests the model’s ability to retrieve one (or many) isolated and independent
facts (the “needles"), which are inserted at various points in a large text of irrelevant information
(the “haystack") Team et al. (2023); Anthropic (2024). The Gemini 1.5 announcement claims high
performance across long context windows due to its high performance on NIAH. Though such NIAH
methods are useful as a minimum standard for effective long-context performance, they do not
capture one of the most important promises of long context LLMs: the ability to reason over a large
amount of information, such as by synthesizing various pieces of information in the text and, thereby,
being able to deduce non-trivial conclusions. We introduce the novel Progressive Needles Test, a
form of puzzle and method for evaluating long context reasoning in LLMs. We task models with
synthesizing various pieces of information in order to generate the correct conclusion to a query. In
particular, we insert N pieces of relevant information (the “needles") into a large, irrelevant body of
text (the “haystack"), where the nth piece of information (“needle") directly depends on the n+ 1th
piece of information (another “needle"), e.g. the information “The value of Needle 0 is the value of
Needle 1 plus 6" directly depends on the information “The value of Needle 1 is 5". We then provide
the model with the haystack with needles inserted (i.e. relevant information randomly inserted in a
large irrelevant text), and query the model to answer a question. The question requires the model to
synthesize the information from all N needles scattered throughout the haystack in order to deduce
the correct conclusion. We find that advanced long context LLMs such as Mixtral 8x7B Mixture of
Experts model and the January 2024 release of GPT-3.5 experience a sharp decline in performance
when the relevant information is scattered across a large corpus as opposed to when solely the
relevant information is passed in.

We demonstrate two task settings for the Progressive Needles test: a numerical reasoning setting, and
a code reasoning setting. We demonstrate that fine-tuning GPT-3.5 on the Progressive Needles task,
hence improving a model’s ability to solve this "puzzle," leads to an approximately 2% increase in
accuracy on a real-world, non-synthetic question-answering benchmark, specifically QuALITY
(Pang et al., 2022). An increased performance on the Progressive Needles task is likely an indicator
of better reasoning and information synthesis abilities in more practical tasks of interest.

3 Related Work

As recent language models have scaled up their context windows, significant research has been done
to understand and evaluate how models perform in longer context settings. The Needle in a Haystack
task (Kamradt, 2024) challenges models with retrieving a randomly placed statement when queried
to do so. However, this is more aligned with a retrieval task as opposed to requiring reasoning across
the corpus. Gemini 1.5 Team et al. (2023); Anthropic (2024), with context lengths of 1 Million
tokens and 200k tokens respectively, are both evaluated on this task, and demonstrate near perfect
performance.

Liu et al. (2024) notes that as context lengths increase, models tend to under utilize the full context
and performance can degrade significantly on long multi-document question answering tasks. While
our work focuses on how different parts of the corpus interact with one another, Liu et al. (2024) is
an essential step toward understanding how models are currently unable to attend to all relevant parts
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of a larger corpus, even when the model has larger context windows and the information itself is
relevant to the task.

Datasets such as HotpotQA and NarrativeQA have further emphasized the need for models that can
effectively handle long contexts Kočiskỳ et al. (2018); Yang et al. (2018). HotpotQA is a multi-hop
question answering dataset that requires models to reason over multiple paragraphs, and understand
connections between them, to arrive at the correct answer. NarrativeQA, on the other hand, focuses
on understanding and answering questions based on long narrative texts, such as books and movie
scripts. Answering questions in these datasets requires reasoning over complicated parts of long
passages and understanding the relationships between them.

Srivastava et al. (2024) also proposes a framework for effective reasoning benchmarks: namely, that
a static version of the benchmark should be complemented by a functional variant to accurately
measure and reduce the reasoning gap between memorized and dynamically reasoned responses. This
inspires our dynamic benchmark, which randomly generates needles for a provided hay, reducing the
likelihood that high performance on this benchmark can be attributed to memorization.

4 Approach

The Progressive Needles test is primarily designed to pressure test the ability of long context LLMs to
effectively synthesize and reason about information in large texts. To that end, we create a randomized
programmatic method of generating Progressive Needle questions. Each question consists of: (1)
information, i.e. the needles inserted in a haystack of varying size; and (2) a query, which requires
the model the synthesize information from the needles to deduce the correct answer. An instance of
the Progressive Needle test is further parameterized by the following: (1) the type of question, i.e.
the type of task that the model is required to solve; (2) the number of needles used, which determines
the number of reasoning steps the model must go through to solve the question; and (3) the size the
haystack used, i.e. the number of tokens of irrelevant information that the needles will be inserted
into. We consider two types of tasks, numerical reasoning and code reasoning, and describe their
implementations below. This approach is, to the best of our knowledge, a novel method of evaluating
long context reasoning. Hence, we independently wrote nearly all of the codebase required to run and
analyze the Progressive Needles test, which can be accessed here, including the entire pipeline for
generating Progressive Needles questions in various settings, running evaluation of various models,
and analyzing resulting model outputs (we borrow a few data utility functions from these sources
where necessary to speed up development).

Consider a Progressive Needles test with N needles per question and a haystack with M tokens.

4.1 Numerical Reasoning Setting

Information To generate the information, we first generate N needles, which are pieces of relevant
information necessary to answer the query. In the numerical reasoning setting, these needles take the
form

“The value of Needle n is equal to the value of Needle n+ 1 [plus/minus] [x]"

for all 0 ≤ n < N, x ∈ N, x ≤ 10, and

“The value of Needle n is equal to [x]"

for n = N, x ∈ N, x ≤ 10.

Then, we create a haystack of M tokens of irrelevant text by taking the first M tokens of a classic
mathematical treatise by Alfred North Whitehead, “An Introduction to Mathematics" Whitehead
(2017), which is thematically related to the needles but is irrelevant for answering the query. We
choose a thematically similar haystack in order to more closely emulate the real-world use of
LLMs, since, when passing e.g. an entire book in-context to a model and asking it to answer a
specific question about the book, the model must be able to ignore thematically similar but irrelevant
information when generating a response.

Finally, we insert the N needles in random order and at random positions within the haystack text to
generate the information passed into the model. See Figure 1 for an illustration of this process.
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Figure 1: Process of placing numerical progressive needles in a haystack.

Query The query posed to the model is “What is the value of Needle 0?" Hence, by construction of
the needles, correctly answering this query requires recognizing that to find the value of Needle 0, one
must find the value of Needle 1, and therefore Needle 2, and so on, until reaching Needle N, for which
a number value is directly provided. Furthermore, in addition to recognizing the relevant information,
the model must synthesize all the various pieces of information contained in the N needles in order
to arrive at the correct conclusion: the numerical value of any Needle n, n < N , is never explicitly
mentioned in the text, so the model must deduce its value by incorporating information about the
value of the n+ 1th Needle over N steps of reasoning to reach the value of Needle 0. See Figure 2
for an illustration of the depth of reasoning and information synthesis required by the Progressive
Needles query.

Figure 2: Reasoning over Progressive Needles Query

4.2 Code Reasoning Setting

Information The code reasoning setting is structurally identical to the numerical reasoning setting.
However, the needle information is formatted in terms of a simple Python function:

def get_value_of_needle_n(): return get_value_of_needle_[n+1] [+/-] [x]

for all 0 ≤ n < N, x ∈ N, x ≤ 10; and

def get_value_of_needle_n(): return [x]

for n = N, x ∈ N, x ≤ 10.

For our haystack corpus, we use the first M tokens from the concatenation of all functions used in the
HumanEval benchmark (in particular, the “solution" function for each HumanEval question) (Chen
et al., 2021), as these functions are thematically related to the code-based needles above but irrelevant
for solving the query.

Finally, we insert the N needles in random order and at random positions within the haystack text to
generate the information passed into the model (see Figure 3). Since the haystack is composed of
standalone functions (i.e. functions which are not nested within other functions or classes), we can
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insert the code needles in between functions and assure that the resulting information is a syntactically
and functionally correct Python program.

Figure 3: Process of placing code progressive needles in a haystack.

Query Similar to the numerical setting, the query for code reasoning is “What value is returned
by get_value_of_needle_0()?". In this setting, correctly answering the query requires correctly
following N chained function calls, since each nth function calls an n+ 1th function for n < N .

4.3 Baseline Comparison: No Haystack

Since the Progressive Needle evaluation focuses on long context reasoning in particular, a natural
baseline to contextualize long context reasoning abilities is “short" context reasoning, i.e. model
performance when it is only presented with relevant information, and no irrelevant information. As
such, the baseline for the Progressive Needles task is when the information passed into the model
is only the needles (in randomly shuffled order), i.e. “needles only", with no haystack of irrelevant
information. Thus, degradation in performance relative to this “short" context setting demonstrates
that a model is performing worse than it is otherwise capable of, and that this is specifically due to
having to reason over a long context (rather than some inherent difficulty of the problem).

5 Experiments

We analyze the performance of advanced LLMs with relatively long context windows (> 10k tokens)
such as GPT-3.5, Mixtral 8x7B, and GPT-4 Achiam et al. (2023); Jiang et al. (2024); OpenAI et al.
(2024) in both the numerical reasoning and code reasoning settings, for varying numbers of needles
and haystack sizes (due to cost constraints, we consider a limited but informative number of settings).
In addition, we perform fine-tuning experiments on GPT-3.5 to validate the usefulness of solving
Progressive Needles tasks for increasing performance on real-world, non-synthetic tasks.

5.1 LLM Performance in the Numerical Reasoning Setting

We evaluate GPT-3.5 and Mixtral 8x7B on 75 randomly generated Progressive Needles questions
in the numerical reasoning setting as described in Section 4.1; we evaluate GPT-4 on 50 questions
due to budget constraints. We evaluate GPT-3.5 and Mixtral 8x7B with needles-only information (no
haystack), 2k tokens of haystack, 7k tokens of haystack, and 12k tokens of haystack; likewise, we
consider model performance for both N = 2 and N = 4, where N represents the number of needles
used. For GPT-4, we only evaluate with needles-only information (no haystack) and 20k tokens of
haystack, to provide the more advanced model with a more difficult test setting 9. Although our
analysis is easily extended to large values of N , we limit our primary analysis to four needles or less
since, in real-world settings, the number of reasoning and information synthesis steps required to
correctly answer a query typically involves combining information from a handful of distinct facts,
rather than iteratively synthesizing information over, say, 10 mutually distinct pieces of information.

To assess performance for all models, we use exact match accuracy, since the correct answer to any
Progressive Needles question is a recursively calculable integer value. Furthermore, when evaluating
a model, we append the instruction “Let’s think step by step" to the question prompt in order to elicit
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greater reasoning capabilities from the model. For all models, we generate with temperature set to 0
in order to limit the stochasticity of our results.

We provide results for for both analyzed settings: two needles and four needles (Tables 1 and 2).
Importantly, we find that greater haystack size decreases accuracy on numerical Progressive Needles
questions. Although this result is expected for smaller models such as Mixtral, surprisingly, this
trend also holds for the most advanced model we evaluate, GPT-4, which sees an 18% decrease
in performance between the needles-only and 20k haystack information settings. In addition, the
severity of decline in accuracy for GPT-3.5 and Mixtral in a problem setting as simple as 2 needles is
surprising, as accuracy drops by over 50% for both models when going from needles-only information
to needles hidden in a 12k haystack. Furthermore, we find that model performance becomes more
sensitive to the haystack size when more needles are used, i.e. when correctly answering the question
requires deeper reasoning and more steps of information synthesis. An important observation in
this regard is that the results we observe with the numerical Progressive Needles evaluation diverge
significantly from previous results with Needle-in-the-Haystack (NIAH) evaluations in that we observe
significant degradation of model performance at relatively small context lengths (less than 20k
tokens), in contrast to a previous NIAH evaluation which finds that both Mixtral and GPT-4 suffer
approximately 0 loss in simple retrieval accuracy over up to 30k context sizes (Dhinakaran and Jolley,
2024).

Haystack size GPT3.5 Mixtral
0 100.00% 98.70%
2k 93.70% 89.30%
7k 29.30% 38.70%
12k 29.30% 45.30%

Table 1: Evaluation of performance on two needles,
numerical setting.

Haystack GPT3.5 Mixtral
0 98.70% 98.70%
2k 81.30% 38.70%
7k 18.70% 6.67%
12k 10.70% 5.33%

Table 2: Evaluation of performance on four needles,
numerical setting.

Haystack Size (Token Length) Accuracy
0 98%
20k 80%

Table 3: GPT-4 evaluation on four needles, numerical setting.

5.2 LLM Performance in the Code Reasoning Setting

Identical to the numerical needle setting, we evaluate GPT-3.5 and Mixtral 8x7B on 75 randomly
generated Progressive Needles questions in the code reasoning setting as described in Section 4.2;
we evaluate GPT-4 on 50 questions. We evaluate GPT-3.5 and Mixtral 8x7B with needles-only
information (no haystack), 2k tokens of haystack, 7k tokens of haystack, and 12k tokens of haystack;
likewise, we consider model performance for both N = 2 and N = 4, where N represents the
number of needles used. For GPT-4, we only evaluate with needles-only information (no haystack)
and 20k tokens of haystack.

Again, to assess performance for all models, we use exact match accuracy, and when evaluating a
model, we append the instruction “Let’s think step by step" to the question prompt in order to elicit
greater reasoning capabilities; we generate with temperature set to 0.

We provide results for both the 2 needle and 4 needle settings (Tables 4 and 5). Interestingly, we find
that GPT-3.5 and Mixtral performance are higher across the board in the code setting compared to the
numerical setting. This likely arises from the fact that properly evaluating code with chained functions
calls is likely more in-distribution with regards to the code data that these LLMs are most likely
trained on, hence higher overall performance in the code setting is to be expected. That being said, we
nonetheless observe a trend of increasing haystack size leading to decreased accuracy, particularly in
the more challenging problem setting of 4 needles, where deeper reasoning and information synthesis
is required to correctly answer a question.
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Haystack size GPT3.5 Mixtral
0 100.00% 100%
2k 100% 96.00%
7k 90.70% 90.70%
12k 73.30% 94.70%

Table 4: Evaluation of performance on two needles,
code setting.

Haystack size GPT3.5 Mixtral
0 98.70% 94.70%
2k 87% 84%
7k 84.00% 82.70%
12k 73.30% 58.70%

Table 5: Evaluation of performance on four needles,
code setting.

5.3 Fine-tuning on the Progressive Needles Test

In order to establish the connection between performance on the Progressive Needles test and
performance on non-synthetic, real-world data, we fine-tune GPT-3.5 on a corpora of Progressive
Needles numerical reasoning questions. Each training example in this corpora consists of: information,
which can vary from 1k to 13k tokens of haystack text and 2 to 6 numerical needles; a query asking
for the value of Needle 0; and a procedurally generated answer that includes step-by-step reasoning
for correctly answering the given query. We use 89 questions, consisting of approximately 650k
tokens total; we use the default hyperparameters provided by OpenAI, as these cannot be customized.

We hypothesize that models that have learned to perform well on Progressive Needles should exhibit
improved long-context reasoning capabilities on other real-world long context reasoning/synthesis
tasks. We use the QuALITY dataset (Pang et al., 2022) as our real-world “long" context task. The
QuALITY dataset contains over 2000 multiple-choice questions that assess question-answering based
on a relatively long passage of text (on average, approximately 5k tokens). QuALITY questions
are rated either easy or hard, where hard questions, on average, take a human being more than 45
seconds to answer correctly. In particular, we choose this benchmark since correctly answering the
questions requires proper information synthesis and reasoning over the inputted text passage, but in a
real-world context that is very different (i.e. far out of distribution) from the Progressive Needles test.

We compare our fine-tuned model against the base, non-fine-tuned GPT-3.5 model. We find that
fine-tuning results in a performance boost for both the easy and hard subsets of the QuALITY dataset,
with an overall increase in performance of approximately 1.9%, i.e. answering about 40 additional
questions correctly 6.

This demonstrates that the “skills" required by an LLM to solve the Progressive Needles test are
similar to those that also underlie information synthesis and reasoning over varied, real-world tasks,
even those as relatively unrelated as the QuALITY benchmark.

Model Question Type Accuracy
GPT-3.5-turbo Accuracy on Easy Questions 0.775

Accuracy on Hard Questions 0.605
Overall Accuracy 0.688

GPT-3.5 fine-tuned on numerical needles data Accuracy on Easy Questions 0.803
Accuracy on Hard Questions 0.614

Overall Accuracy 0.707
Table 6: GPT 3.5-turbo vs. fine tuned model performance on QuALITY dataset

6 Analysis of Progressive Needles Performance

To further dissect LLM performance on the Progressive Needles test, we perform an error analysis of
the evaluation results of models such as Mixtral 8x7B and GPT-4. In particular, we investigate using
a continuous metric for scoring model responses and the incidence of model “refusals", i.e. where the
model responds that the question cannot be answered.

6.1 Continuous Scoring

To validate the fact that the decrease in model performance from greater amounts of hay tokens
and a greater number of needles used is not simply a byproduct of stringent evaluation criteria
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Schaeffer et al. (2024), we reevaluate model responses using a continuous, less stringent metric.
In particular, we use the average absolute value of the difference between the model’s prediction
and the correct answer (we skip responses where the model refuses to provide a number answer);
since this is a loss-like metric, lower scores are better. We find that, even for GPT-4, the average
deviation of the answer in the most difficult haystack setting (20k tokens) is 1.6x that of the average
deviation of answers in the needles-only (no haystack) setting (Table 8). For less advanced models,
this difference is more pronounced: Mixtral 8x7B exhibits up to a 100x worse performance in its most
difficult question setting (numerical reasoning, four needles, 12k tokens of haystack) compared to the
needles-only setting (numerical reasoning, four needles, 0 tokens of haystack; see Table 7, the four
needle). Thus, this indicates that even when the model is “confident" enough to attempt to provide a
number answer to the question, its ability to extract and/or synthesize the necessary information is
nonetheless worse than when it performs in the small context setting with no irrelevant information.

6.2 Refusal Rates

When qualitatively analyzing model responses on the Progressive Needles test, we find that a fairly
common failure mode for models on tasks with large haystacks was “refusal": responding to the
query by stating incorrectly that there is insufficient information provided, and “refusing" to provide
a numerical answer. When filtering for model answers marked incorrect which also include key
words such as “cannot be determined" and “unable", we find that refusal rates are much higher
for Mixtral 8x7B than for GPT-4 (as seen in Tables 7 and 8). Hence, an interesting implication
of this finding is that “refusals" may be an important shortcoming of less advanced models for
long-context reasoning tasks, particularly when the information passed in context is sparse in relevant
information—often naturally the case when asking targeted questions about large texts. Furthermore,
this again demonstrates the importance of long context reasoning tasks, like Progressive Needles,
in particular: Mixtral 8x7B and GPT-4 perform similarly at single-needle Needle in a Haystack
evaluations at context sizes of up to 30k tokens (Dhinakaran and Jolley, 2024), but, when tested on
deeper reasoning over information in long context settings via the Progressive Needles test, the large
quantitative and qualitative gaps in performance between the models come into sharper relief. Finally,
it is important to note that refusal rates for needles-only information, with no irrelevant haystack
information, are 0% for both models (due to overall model performance being near or at 100%
accuracy), indicating that model refusals are a direct result of the sparsity of relevant information in
context, rather than an inherent difficulty in the reasoning required to solve the task.

7 Conclusion

The development of long context LLMs has been an important step forward in capabilities of
language models, allowing for, in some cases, entire textbooks to be passed in context to a model.
However, effective methods for evaluating the long context performance of LLMs have yet to catch up.
Although an effective minimal standard for long context information processing, the popular Needle
in a Haystack evaluations do not require sufficient depth of reasoning and information synthesis to test
the higher order and most promising abilities of long context models. The Progressive Needles test,
whether in the numerical or code setting, allows for an effective, objective, and automatic evaluation
of long context models which also critically tests the ability of models to reason over the information
provided in context and synthesize relevant pieces of information in order to deduce the correct
conclusion. When evaluating models on the Progressive Needles test, we see a strong and reliable
trend of decreased performance as haystack size increases, particularly in the numerical reasoning
setting; we find this trend holds, even for advanced models such as GPT-4 when evaluated in the
numerical reasoning setting. Furthermore, we find that fine-tuning on numerical Progressive Needles
questions leads to an increase in performance on the real-world, non-synthetic question-answering
benchmark QuALITY; we conjecture that this stems from the fact that solving the Progressive Needles
test does indeed require general reasoning and information synthesis skills, which are transferable to
real-world long context tasks.
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A Benefits of Progressive Needles as an Evaluation Framework

There are many benefits to using the Progressive Needles test to evaluate long context reasoning,
principal among them: (1) The task is easily adaptable to any context length, since the haystack text
used can be set to be an arbitrary number of tokens; (2) The task is randomized and, hence, not easily
memorized/contaminated; (3) Correct answers are exact and objectively determined; (4) Correctly
answering the query requires long context reasoning to determine which information is relevant, and
long context information synthesis of various pieces of information in order to deduce the proper
conclusion, such as a specific numerical value.

B Limitations

One limitation of our evaluation framework is that we want to replicate real world tasks. Mentions of
needles in texts that are different in topic may not be representative of real world tasks. Further, the
reasoning steps are not more complicated than addition, hence one improvement that can be made is
challenging models with more rigorous reasoning problems. Another potential extension of our work
is generating needles that are more natural to the context/hay they are embedded within.
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C Error Analysis Tables

Here we present results for our error analysis discussion in Section 6.

Haystack size Avg. Absolute Deviation from Correct Answer Refusal Rate
0 0.45 0%
2k 4.79 44%
7k 9.37 72%
12k 9.27 67%

Table 7: Error analysis for Mixtral in the numerical reasoning setting, 4 needles

Haystack size Avg. Absolute Deviation from Correct Answer Refusal Rate
0 0.32 0%
20k 0.54 12%

Table 8: Error analysis for GPT-4 in the numerical reasoning setting, 4 needles

D Plots of Progressive Needles Performance

Here we present plotted visualizations of various GPT-3.5 and Mixtal’s performance in various
Progressive Needles test settings.

Figure 4: Two Needles with Numerical Exam-
ples

Figure 5: Four Needles with Numerical Exam-
ples
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Figure 6: Four Needles with Code Examples

Model Task type Num needles
(shuffled)

Haystack tokens (content) Accuracy without
Haystack (Needles-
only)

Needles in Haystack
Accuracy

Claude 3 Opus Numerical 15 ∼10k (Brothers K.) 0.82 0.24
Claude 3 Sonnet Numerical 15 ∼10k (Brothers K.) 0.79 0.38
GPT-4 (1/25) Numerical 12 ∼5k (Brothers K.) 0.92 0.73
GPT-3.5 Code 5 ∼3.7k (Human eval) 0.96 0.82
GPT-3.5 Code 5 ∼7.5k (Human eval) 0.98 0.6
GPT-3.5 Code 10 ∼3.7k (Human eval) 0.80 0.66
GPT-3.5 Code 10 ∼7.5k (Human eval) 0.80 0.44
Mixtral MoE Numerical 2 4699 (Brothers K.) 0.86 0.68
Mixtral MoE Numerical 4 4699 (Brothers K.) 0.94 0.24
Mixtral MoE Numerical 2 9073 (Brothers K.) 0.86 0.7
Mixtral MoE Numerical 4 9073 (Brothers K.) 0.94 0.14
Mixtral MoE Code 2 3769 (Human Eval) 1 0.88
Mixtral MoE Code 4 3769 (Human Eval) 0.9 0.92
Mixtral MoE Code 2 7582 (Human Eval) 1 0.92
Mixtral MoE Code 4 7582 (Human Eval) 0.96 0.84
Mixtral 7B Numerical 2 4699 (Brothers K.) 0.84 0.28
Mixtral 7B Numerical 4 4699 (Brothers K.) 0.74 0.06
Mixtral 7B Numerical 2 9073 (Brothers K.) 0.84 0.16
Mixtral 7B Numerical 4 9073 (Brothers K.) 0.76 0.00
Mixtral 7B Code 2 3769 (Human Eval) 0.92 0.34
Mixtral 7B Code 4 3769 (Human Eval) 0.38 0.02
Mixtral 7B Code 2 7582 (Human Eval) 0.92 0.42
Mixtral 7B Code 4 7582 (Human Eval) 0.38 0.04
GPT-3.5-Turbo Numerical 2 4699 (Brothers K.) 0.86 0.72
GPT-3.5-Turbo Numerical 4 4699 (Brothers K.) 0.94 0.64
GPT-3.5-Turbo Numerical 2 9073 (Brothers K.) 0.86 0.58
GPT-3.5-Turbo Numerical 4 9073 (Brothers K.) 0.94 0.24
GPT-3.5-Turbo Code 2 3769 (Human Eval) 1 0.9
GPT-3.5-Turbo Code 4 3769 (Human Eval) 0.98 0.76
GPT-3.5-Turbo Code 2 7582 (Human Eval) 1 0.86
GPT-3.5-Turbo Code 4 7582 (Human Eval) 1 0.62
Claude 3 Sonnet Numerical 4 ∼15k (Dost) 0.87 0.5

Table 9: Plots of Progressive Needles Performance

12


	Key Information to include
	Introduction
	Related Work
	Approach
	Numerical Reasoning Setting
	Code Reasoning Setting
	Baseline Comparison: No Haystack

	Experiments
	LLM Performance in the Numerical Reasoning Setting
	LLM Performance in the Code Reasoning Setting
	Fine-tuning on the Progressive Needles Test

	Analysis of Progressive Needles Performance
	Continuous Scoring
	Refusal Rates

	Conclusion
	Benefits of Progressive Needles as an Evaluation Framework
	Limitations
	Error Analysis Tables
	Plots of Progressive Needles Performance

