
AdaptBert: Parameter Efficient Multitask Bert
Stanford CS224N Default Project

Shweta Agrawal
Stanford University

ashweta@stanford.edu

Jieting Qiu
Stanford University

jtqiu09@stanford.edu

Abstract

In this project, we explore a range of parameter efficient multitask learning methods
to train Bert efficiently for multiple downstream NLP tasks. While fine-tuning
the whole LLM is an effective transfer learning method and sets the bar for the
accuracy on downstream tasks, full fine-tuning is parameter inefficient, requiring
retraining a whole new model, updating, and potentially storing, a large number of
parameters for every new task. We show that similar performance as full fine-tuning
can be achieved using parameter effficient fine-tuning (PEFT) methods like LoRA,
Adapater and Hypernetworks. We study each of these methods with a range of
parameters, and also come up with a LoRA+Adapter combination, that is able to
achieve similar performance overall and slightly better on some tasks compared to
full multi-task fine-tuning while updating only 17% of the parameters per task.

1 Key Information to include

Olivia Lee was our assigned mentor. We do not have any external collaborators. And we are not
sharing the project with any other course.

Contribution: Equal. We both independently finished part 1 implementation. Shweta implemented
LoRA and Adapter, and the LoRA+Adapter combination. Jieting also did an implementation of
Adapters, and implemented Hypernetworks. We both debugged and tuned various runs together and
contributed to the report.

2 Introduction

Large language models (LLMs) pretrained on unlabelled text have been very effective in getting
better accuracy in solving downstream tasks, through transfer learning. Pretrained models like Bert
Devlin et al. (2018) are trained on large set of unlabeled data on generic tasks like detecting masked
words, using a “masked language model" (MLM) pretraining objective. For fine-tuning, the Bert
model is first initialized with the pretrained parameters, and all of the parameters are fine-tuned using
labeled data from the downstream tasks. This full fine-tuning is very effective in transfer learning
for downstream NLP tasks. However, in the presence of many downstream tasks, fine-tuning is
parameter inefficient: an entire new model and retraining of 100% of parameters is required for every
task. Parameter efficient fine-tuning (PEFT) methods enable efficient adaptation of LLMs to various
downstream applications by only updating a small number of extra model parameters, hence saving
computational and storage costs.

In this project, we explore three different PEFT methods LoRA Hu et al. (2021), Adapters Houlsby
et al. (2019), and Hypernetworks-based Adapter Mahabadi et al. (2021), along with creating a new
Adapter+LoRA variant by applying task-specific Adapter and shared LoRA attention adaptation
(Figure 5 in appendix). We report our findings on three downstream tasks of Sentiment Analysis,
Paraphrase Detection, and Semantic Textual Similarity. We show a clear relationship between
accuracy and number of parameters to train. This relationship is however not the same for the
three methods. For the given dataset and tasks, Adapters being the simplest also seem to scale

Stanford CS224N Natural Language Processing with Deep Learning



the best. Ultimately, we are able to achieve same, or even slightly better accuracy on some tasks,
with a multitask model training only a fraction of parameters, with LoRA+Adapter getting the best
performance and parameter efficiency.

Semantic Analysis seems to be the most difficult task to get higher accuracy on. Hence, we addition-
ally explore various hyper-parameter tuning for getting better performance on this task, including
learning rate, dropout and weight decay parameters. We achieve slightly better accuracy with each
of these methods, but none of them seem to produce dramatically better accuracy, indicating that
this likely benefit from additional data or pretraining. We also investigate different loss functions for
Semantic Textual Similarity, and find that the MSELoss works much better for compared to Cross
entropy loss, by only needing to estimate one logit and Pearson coefficient used in the accuracy.

3 Related Work

Natural Language Processing (NLP) comprises of a wide variety of language understanding tasks.
While the unlabelled natural language text is abundant on internet, labelled data for each of these
specific tasks is limited. Pretraining a large model on a generic language understanding task predicting
next word has been shown to be useful for effective for improving the accuracy and performance
of Natural language processing tasks Radford et al. (2018). There are many ways with which these
pretrained large language models can be used for downstream NLP tasks. Zero shot learning Radford
et al. (2019) shows the ability of the model to do many NLP tasks with no examples; and no gradient
updates. Few shot learning Brown et al. (2020) enables using a pretrained LLM for a new task by
simply prepending examples of the task before your example. Sophisticated prompting (prompt-
tuning or prompt-engineering) techniques have been explored to get LLMs to do new tasks, by just
using better prompts, example Zero shot promot design for text classification in Hase et al. (2021).

However, many NLP tasks are too difficult to be solved by prompting alone. It is tedious to provide
prompts every time, and the accuracy is limited that way. Hence, models are fine-tuned to specific
downstream tasks. This idea has been used to achieve better accuracy for many downstream NLP
tasks, for example with Bert Devlin et al. (2018). Full fine-tuning of all parameters is however
expensive with large models. Storing and serving a separate full fine-tuned model for every task
is also expensive and impractical. Parameter efficient multitask fine-tuning methods aim to train a
single model for multiple downstream tasks, training only a fraction of the parameters to achieve
same or better accuracy on downstream tasks through transfer learning of shared frozen parameters,
and learning some task specific parameters.

Some of these techniques make use of sparsity in model parameters, and look to specifically prune
some parameters before adaptation, by using some heuristics on which parameters might be less
important Han et al. (2017), before adapting to specific tasks. A large class of techniques have been
explored in some sort of low rank adaptation. LoRA Hu et al. (2021) does the adaptation using a low
rank updates to the weights mostly in the attention layer, QLoRa improves it further by quantizing to
4-bit precision Dettmers et al. (2023), prefix tuning Li and Liang (2021) adds a task specific prefix of
parameters, adapters Houlsby et al. (2019) introduce task specific adapter modules in each layer after
attention and feed-forward modules, and Hypernetworks use a common adapter network, conditioned
on task, layer and position Mahabadi et al. (2021).

Note: Many of the references are inspired by Diyi Yang’s lecture on Efficient Adaptation.

4 Approach

We implement the basic Bert model attention and forward methods, as well as single and multitask
classifiers as instructed in the handout. We use the following loss functions for the three downstream
NLP tasks:

• Sentiment Analysis (SST): Apply a linear layer to product num_labels (5) logits, and use a
cross entropy loss with labels.

• Paraphrase detection (Para): Apply a linear layer to produce one logit, and use binary cross
entropy loss (BCELoss) against the labels.

2



• Semantic Textual Similarlity (STS): Apply a linear layer to produce one logit, and use mean
square error (MSELoss) against the labels. We also tried the cross entropy loss but MSELoss
gave significantly better performance.

Using these loss functions, we first train and evaluate the downstream tasks using option pretrain for
which base Bert model parameters are frozen. This sets lower baseline for accuracy on these tasks.
We then evaluate single-task fine-tuning for Semantic analysis using SST and CFIMDB datasets, that
fine-tunes all parameters of the model into a separate model for each task. And, train a full fine-tune
multi-task model for all three tasks that updates 100% of the parameters of the pretrained model to
give one multitask model for all downstream tasks. These fully fine-tuned models set the bar for
higher end of accuracy achievable by parameter efficient fine-tuning.

We then implement the following extensions for parameter efficient fine-tuning (PEFT):

4.1 LoRA

LoRA or Low Rank Adaptation (Hu et al., 2021), represents the updates to the original attention weight
vectors with a low-rank decomposition W0 +∆W = W0 +BA, where B ∈ Rd×r, A ∈ Rr×k, and
the rank r ≪ min(d, k). During training, W0 is frozen, while A and B contain trainable parameters.
LoRA allows us to train some dense layers in the network indirectly by updating only smaller rank
decomposition matrices during adaptation instead. We implement LoRA adaptation in attention
layers from scratch for query, key and value vectors, adding a LoraBertSelfAttention module derived
from BertSelfAttention, taking inspiration from the towardsdatascience blog.

4.2 Adapater

Adapter (Houlsby et al., 2019) represents task specific module that first down-projects input to a
smaller adapter dimension, followed by a non-linear activation, followed by up-project back to the
input dimension. We implement Adapter modules ourselves in the Bert code, following the ideas
from paper (Houlsby et al., 2019). Each layer of the Transformer contains two primary sub-layers: an
attention layer and a feed-forward layer. As described in the paper, we insert two serial adapters after
each of self-attention and feed-forward layer, with output of these adapters fed into the corresponding
add-norm operation. The total number of parameters added per layer, is 2md + m (where m is
bottleneck dimension and d is the original dimension), since we do not use extra bias terms. During
training, the parameters of the original Bert model remain frozen, and only the parameters of the task
specific adapter modules are updated. We report the accuracy for different adapter dimension size
which influence percentage of updatable parameters.

4.3 LoRA + Adapter

Our implementation of LoRA shares all the low rank attention weight matrices across tasks. This
provide low parameter updates and transfer learning. However, the adapters are task specific and
provide task isolation. We implement a combination of LoRA+Adapater to get both the benefits
and find that it can achieve same or better accuracy compared to LoRA or Adapter alone using less
number of parameter updates.

4.4 Hypernetwork

Task-specific Adapter (Houlsby et al., 2019) achieves decent transfer-learning performance by
reducing negative interference across tasks by encapsulating task-specific information. However,
adapter modules are trained disjointly for each task and thus do not share information across tasks. We
follow the paper (Mahabadi et al., 2021) to implement shared hypernetworks in adapter modules that
shares the information across all layers and tasks by computing conditional embeddings using task
name, layer id and the position of the adapter (after self-attention block or after feed-forward block).
We use a single embedding network to generate task embedding and two sets of hypernetworks
to generate parameters to feed into down-projection, up-projections and layer-norm (as in Figure
6 in Appendix). We have to use two instead of one is because adapters after self-attention and
feed-forward layers have different layer dimensions. In the following sections, we present shared
Hypernetworks-based adapter modules.

3

https://towardsdatascience.com/implementing-lora-from-scratch-20f838b046f1


One Shared Conditional Task Embedding Network: In order to allow share information across
tasks, we first compute a task embedding conditioned on task, layer and adapter position by using
a task project network hI(.), consisting of a feed-forward layer (FFL), a ReLU non-linearity and a
feed-forward projection (FFP). We use task, layer id, and position id to build a concatenation of task
embedding Zt ∈ Rt, layer embedding li ∈ Rt, position embedding pj ∈ Rt to feed into the task
projector network. And then followed by a layer-norm (LN) to get the final task embedding:

It = ht(Zt, li, pj) = LN(FFP (ReLU(FFL(Zt, li, pj)))) (1)

Conditional Hypernetworks: A hypernetwork is a network that generates the weights of another
network (David Ha, 2017). We define hypernetwork hl

A(.) and hl
LN (.) that consist of simple linear

layers to take in conditioned embeddings and generate parameters for adapters and layer-norms
respectively.

(Ut, Dt) := hA(It) = (WUt ,WDt)It (2)

(βt) := hLN (It) = (Wβ)It (3)

where WU , WD are parameters for the down-projection layer Dt and up-projection Ut respectively,
and Wβ is parameter of layer-norm.

Conditional Adapter Layers and Layer Normalization: We use the generated weights and biases
from the conditional hypernetworks to apply on adapter layers and layer-norm in each Adapter block
as in Figure 6. The adapter layer At consists of a down-projection Dt ∈ Rh×d, a GeLU non-linearity
and up-projection Ut ∈ Rd×h. Additionally, we apply a task conditional layer normalization LNt,
with x is the input hidden state:

At(x) = LNt(Ut(GeLU(Dt(x)))) + x (4)

4.5 Hyperparameter Tuning

Sentiment Analysis seems to be the most difficult task among the three NLP tasks, to achieve higher
accuracy on, with given datasets. We also observe that while training accuracy for Sentiment Analysis
on SST dataset keeps increasing, the eval accuracy does not improve as much, and in some cases
start going down around middle epoch 3 Hence, we try various options to tune Sentiment Analysis
training to reduce over-fitting, and try the raytune to find the optimal hyper-parameters.

5 Experiments

5.1 Data

We use the task specific labelled datasets linked in the handout for fine-tuning the three downstream
tasks (separating train and dev for training and evaluation, and test set for testing).

• Sentiment Analysis

□ Stanford Sentiment Treebank (SST) dataset with 11,855 sentences from movie reviews
labeled with 5 ratings from negative to positive.

□ CFIMDB dataset with 2,434 highly polar movie reviews, labelled negative or positive

• Paraphrase Detection: Quora Dataset with 400,000 question pairs with labels indicating
whether particular instances are paraphrases of one another.

• Semantic Textual Similarity: SemEval STS Benchmark Dataset with 8,628 different sentence
pairs of varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning)

5.2 Evaluation method

For evaluating task performance, we use mean accuracy on class labels for evaluating the Sentiment
Analysis and Paraphrase Detection, and Pearson correlation of the true similarity values against
the predicted similarity values for Semantic Textual Similarity, as described in the Default project
handout.

4



5.3 Experimental details

We use the pretrained Bert base model to initialize parameters, and fine-tune Bert model variants
on three downstream NLP tasks, on a single GPU for 10 epochs each. We report accuracy on each
of these tasks, and parameter efficiency in terms of number of parameters updated and number of
parameters stored.

5.4 Results

We report the accuracy on eval (dev) dataset achieved from various model variations along with
needed parameter updates per task and % of extra task specific parameters needed to be stored across
three NLP tasks. Table 1 reports the accuracy on the two Sentiment Analysis tasks using the given
single task classifier using the our implementation of Bert model, with or without fine-tuning, for SST
and CFIMDB data sets. Table 2 reports the performance of base pretrain and fully fine-tuned single
and multi-task models for 3 NLP tasks of Sentiment (SST), Paraphrase and Similarity Detection along
with parameter efficiencies. Table 3 reports the performance of LoRA adaptation for various values of
low rank (r) dimension, task-specific adapter modules for increasing values of adapter dimensions (a),
as well as performance of combination of LoRA and Adapters. Table 3 also reports the performance
of Hypernetworks-based adapter for various values of adapter hidden size dimensions (a) with fixed
task embedding size (t=64). We show the fully fine-tuned multitask model performance for reference
with these efficient adaptation methods. Additionally we study and report relationship of dev accuracy
and training time to parameter updates, for various PEFT (parameter efficient fine-tuning) methods
implemented, in Figure 1 and Figure 2 respectively.

In the end, we report our Test Leaderboard submission, where we submitted the Adapter based
multitask model with dimension=256, and the LoRA+Adapter model, each with dimension 128.
As of this writing we were placed 10th in the Test Leaderboard with our LoRA+Adapter multitask
efficient adaptation model.

Table 1: Single task Bert classifier dev accuracy on Seniment Analysis

Method Type SST CFIMDB

Pretrain Single-task 0.402 0.759
Finetune Single-task 0.538 0.971

Table 2: Bert pretrained and fully fine-tuned models single and multi-task dev performance

Method Type Accuracy
Average

Sentiment
(SST)

Paraphrase Similarity Parameters
updated
per task

Additional
Parameters
stored

Pretrain Single-task 0.416 0.304 0.665 0.183 0% 0%
Pretrain Multi-task 0.384 0.402 0.665 0.182 0% 0%
Finetune Single-task 0.753 0.538 0.886 0.869 100% +200%
Finetune Multi-task 0.764 0.506 0.879 0.875 100% 0%

6 Analysis

6.1 Parameter efficient Fine-tuning (PEFT)

• Pretrain only models have the lowest parameter overhead in terms of both % parameters
updated per task (≈ 0%) and total extra parameters stored across all three tasks (0%),
as shown in Table 2; since all Bert pretrained parameters are frozen, and only the final
classification layers are trained, and all parameters in pretrained model are shared across
three tasks with no extra parameters added. However, these also have the lowest accuracy at
about 0.4.

• Fully fine-tuned models, also shown in Table 2 are the most accurate but also most expensive
in terms of % parameters updated per task (100%) and extra parameters stored, which are

5



Table 3: Parameter Efficient Fine-Tuning: Dev Accuracy

Method Type Accuracy
Average

Sentiment
(SST)

Paraphrase Similarity Parameters
updated
per task

Additional
Parameters
stored

LoRA[r=8] Multi-task 0.676 0.426 0.747 0.854 0.40% 0.40%
LoRA[r=16] Multi-task 0.681 0.404 0.782 0.857 0.81% 0.81%
LoRA[r=16]-
20 epochs

Multi-task 0.710 0.447 0.830 0.852 0.81% 0.81%

LoRA[r=64]-
20 epochs

Multi-task 0.703 0.400 0.851 0.858 3.23% 3.23%

Adapter[a=8] Multi-task 0.684 0.416 0.855 0.782 0.72% 2.15%
Adapter[a=16] Multi-task 0.712 0.456 0.860 0.821 1.39% 4.16%
Adapter[a=32] Multi-task 0.730 0.495 0.864 0.831 2.74% 8.20%
Adapter[a=64] Multi-task 0.741 0.501 0.873 0.850 5.42% 16.26%
Adapter[a=128] Multi-task 0.746 0.509 0.876 0.854 10.8% 32.4%
Adapter[a=256] Multi-task 0.752 0.523 0.877 0.857 21.56% 64.67%

LoRA+Adapter
[r=8, a=64]

Multi-task 0.741 0.496 0.877 0.849 5.83% 16.67%

LoRA+Adapter
[r=16, a=128]

Multi-task 0.749 0.509 0.876 0.862 11.61% 33.20%

LoRA+Adapter
[r=128, a=128]

Multi-task 0.753 0.512 0.879 0.867 17.25% 38.85%

Hypernet[a=8] Multi-task 0.683 0.421 0.822 0.805 1.49% 4.49%
Hypernet[a=16] Multi-task 0.699 0.454 0.822 0.822 2.7% 8.1%
Hypernet[a=32] Multi-task 0.709 0.471 0.835 0.821 5.1% 15.32%
Hypernet[a=64] Multi-task 0.715 0.463 0.849 0.834 9.92% 29.76%
Hypernet[a=128] Multi-task 0.712 0.457 0.841 0.837 19.54% 58.63%

Finetune Multi-task 0.764 0.506 0.879 0.875 100% 0%

Table 4: Test Leaderboard submission accuracy

Test Set Type Test Accu-
racy

Sentiment
(SST)

Paraphrase Similarity Parameters
updated
per task

Additional
Parameters
stored

Adapter[a=256] Multi-task 0.776 0.519 0.877 0.859 21.56% 39.32%
LoRA+Adapter
[r=128, a=128]

Multi-task 0.778 0.525 0.879 0.862 17.25% 38.85%

0% for a multitask fully fine-tuned model, but 3x (or +200%) for per-task separate fully
fine-tuned models. The best overall accuracy here is 0.764.

• We observe a direct correlation of accuracy on the dev set to #parameters updated across
fine-tuning methods as shown in Figure 1, across different methods of parameter efficient
fine-tuning.

• We also observe a direct correlation between training time to #parameters updated during
fine-tuning as shown in Figure 2. However, as shown in the figure, we are unable to get a
training time below 5.5 minutes (roughly half of the full fine-tuning time for our GPU) even
with training very less parameters like 0.8%. This could be because of the fixed memory
read/write bottlenecks instead of compute bottlenecks.

• We are able to achieve accuracy of 0.749, very close to multi-task fully fine-tuned model,
with LoRA+Adapter combination at 11.6% parameter updates per task, as shown in Table 3.

6



0 50 100

0.4

0.6

0.8

% Parameters Updated per Task

A
ve

ra
ge

D
ev

A
cc

ur
ac

y

Pretrain
Finetune
LoRA

Adapter
Hypernet

Figure 1: Dev Accuracy

0 50 100

2

4

6

8

10

% Parameters Updated per Task

E
po

ch
tim

e
in

m
in

ut
es

Pretrain
Finetune
LoRA

Adapter
Hypernet

Figure 2: Training efficiency

100 101

0.5

0.6

0.7

0.8

Epoch

A
cc

ur
ac

y

Train
Dev

Figure 3: SST Accuracy over epochs

10−8 10−7 10−6 10−5 10−4 10−3

0.2

0.4

0.6

0.8

1

Learning Rate

A
cc

ur
ac

y

Best Train
Best Dev

Figure 4: SST accuracy by Learning Rates

And even exceed performance of SST task at adapter dimension 256 with 21.6% parameter
updates per task.

• Adpaters, as shown in Table 3 seem to scale more linearly to adding more parameters than
LoRA and Hypernetworks. This could be because every parameter added for adapters is
task specific, while LoRA and Hypernetworks share parameters and rely on transfer learning
between these downstream tasks, which seems to generally be difficult here.

• Shared LoRA attention weights by itself does not seem to perform very well for Sentiment
Analysis, as shown in Table 4, but is very parameter efficient, and is able to achieve 93% of
overall accuracy compared to full fine-tuning only updating 0.8% of total parameters!

• LoRA+Adapter combination gives the best performance at better parameter efficiency than
Adapter alone, likely due to combining benefits of task inference and isolation, at 0.753
overall accuracy and 17% parameter updates.

6.2 Hyperparameter tuning for SST

• Learning rate: We observe that the current learning rate of 1e−5 is pretty much the optimal
learning rate and the model does not train well below or above this learning rate. 2e−5 is
slightly better but not by a lot, as shown in Figure 4

• Classification layer Dropout and regularization: Since the model seems to be over-fitting on
training data, we try raytune to tune the classification layer dropout and weight decay of
AdamW optimizer by dev accuracy. Raytune arrives at a dropout prob of 0.223 and a weight
decay of 0.445. We do a multi-task run with these values, but the accuracy across tasks does
not go up significantly.

7



7 Conclusion & Future work

We are able to achieve similar overall, and even slightly better accuracy on some tasks, with multitask
parameter efficient fine-tuning compared to fully fine-tuned model. Compared to 0.764 overall
accuracy of our best fully fine-tuned multi-task model, we achieved overall accuracy of 0.753
(−0.011 or -1.4%) at 17% parameter updates with LoRA+Adapter combination. And 0.752 (diff of
−0.012 or -1.5%) at 21.5% parameter updates with Adapter. A few other learnings and conclusions:

• Given we were trying to train a multi-task model with three tasks only, these tasks seemed
to benefit less from transfer learning from each other but were more influenced by negative
inference. Hence, techniques that reduced negative inference, for example, task-specific
adpaters performed better than techniques that relied on shared parameters and transfer
learning like Hypernetworks.

• Our LoRA+Adapter combination of shared low rank adaptation of attention weights from
LoRA, and task specific Adapters after attention and feed-forward layers worked well in
getting same accuracy with less parameters, indicating that combining these parameter
efficient techniques could result in benefits of task specific and cross-task transfer learnings.

• Sentiment Analysis was especially difficult task to improve upon. We explored hyperparam-
eter tuning along multiple dimensions, however, this task seemed to be limited by labelled
data a bit more than others. And likely additional pretraining with relevant datasets could
have helped. We did try to add CFIMDB but that seemed to hurt SST performance even
further in multitask environment. Likely because of negative inference from more polar
reviews.

As future work, it would be interesting to see if the accuracy of SST can be improved by additional
pretraining. And how these techniques would fare differently if there was lot more than 3 tasks. For
example if these techniques were used for 10 or 50 or 100 tasks, would then something like hyper-
networks would show much more advantage by enabling transfer learning across these downstream
tasks and also parameter savings.

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models
are few-shot learners. arXiv preprint arXiv:2005.14165.

Quoc V. Le David Ha, Andrew Dai. 2017. Hypernetworks.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. Qlora: Efficient
finetuning of quantized llms.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Vajda,
Manohar Paluri, John Tran, Bryan Catanzaro, and William J. Dally. 2017. Dsd: Dense-sparse-dense
training for deep neural networks.

Peter Hase, Sebastian Schuster, Christopher Eichstaedt, and Iryna Gurevych. 2021. Zero-shot prompt
design for text classification. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. 2021.
Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks.

8

http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1607.04381
http://arxiv.org/abs/1607.04381
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2106.04489


Figure 5: Variants: Adapter, LoRA, Adapter+LoRA

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language
understanding by generative pretraining. URL: https://s3-us-west-2.amazonaws.com/openai-
assets/research-covers/language-unsupervised/languageunderstandingpaper.pdf.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, and et al. 2019. Language models
are unsupervised multitask learners. arXiv preprint arXiv:1901.02860.

A Appendix (optional)

9



Figure 6: Hypernetworks-based Adapter

10


	Key Information to include
	Introduction
	Related Work
	Approach
	LoRA
	Adapater
	LoRA + Adapter
	Hypernetwork
	Hyperparameter Tuning

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Parameter efficient Fine-tuning (PEFT)
	Hyperparameter tuning for SST

	Conclusion & Future work
	Appendix (optional)

