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Abstract

In this study, we investigate the efficacy of multi-task learning within a BERT
fine-tuning framework, focusing on optimizing performance for sentiment analysis,
paraphrase detection, and semantic textual similarity tasks simultaneously. We
explore different model variants, incorporating techniques such as round-robin
training, the application of cosine similarity in the STS head, adding additional
Head NN layers, lexicon encoding before task-specific layers, SMART Regular-
ization, and a multi-layered transform. Overall, we found that the combination
of round-robin training, cosine similarity in the STS head, multiple task-specific
layers, and lexicon pre-processing yielded the best results.

1 Key Information to Include

External collaborators:

Peter De la Cruz
Department of Computer Science
Stanford University
pdlcruz@stanford.edu

CS224N staff mentor: Heidi Zhang

Team Contributions:
Shumann: Lexicon Encoding, SMART Regular-
ization, Baseline Bert implementation.

Jordan: Round-Robin, CosineSim, Layer Com-
plexities, Additional SST training, Graphs

2 Introduction

In this project, we harness the advanced capabilities of BERT to build a multi-task classifier targeting
sentiment analysis, paraphrase detection, and semantic textual similarity classification. By integrating
task-specific layers atop shared BERT-based embeddings, our model aims to efficiently learn and
classify input under varied specifications, benefiting from the shared learning process.

In this study, we explore the impact of employing complex versus simple model architectures for
our three specific downstream tasks. Simultaneously, to enhance the performance of a BERT base
model in multi-task learning scenarios, we will analyze the impact of applying various sophisticated
strategies: Cosine-Similarity Fine-tuning, Round-Robin Training, Lexicon Encoding, Additional
Neural Network Layers for Each Head, and Smoothness-Inducing Regularization, and Multi-Layered
Transform. Our approach includes utilizing cosine similarity among BERT embedding pairs followed
by a linear layer to derive final logits. Moreover, we adopt round-robin training to utilize the
effectiveness of multi-task learning. We also implemented lexicon encoding for pairwise input
NLP tasks (paraphrase detection and semantic similarity) to generate a single embedding from
concatenating sentence inputs with a separator. Furthermore, we utilized 3 task-specific linear
layers with batch normalization and dropout. Additionally, we implement smoothness-inducing
regularization by introducing minor perturbations to the inputs, aiming for stable model output. The
assessment of these strategies, reveals certain methodology’s effectiveness over others in enhancing
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the multi-task learning performance of our model, highlighting the advantages of integrating such
techniques in complex model designs.

3 Related Work

In our study, we build upon the foundational work of Vaswani et al. (2017), which introduced the
BERT model, highlighting its innovative use of deep bidirectional architectures for NLP. This advance-
ment underlined the significance of unsupervised pre-training in enhancing language understanding
systems, setting a new benchmark for the breadth of NLP tasks that can benefit from pre-trained
models. Within the scope of fine-tuning techniques, we explore various strategies that have shown to
enhance model performance significantly.

Our project particularly emphasizes the power of multi-task learning as suggested by Liu et al.
(2019). For tasks necessitating the comparison of two inputs, such as paraphrase identification and
semantic similarity evaluation, we approach by concatenating these inputs with a delineating separator
[SEP]. Subsequently, we channel the contextual embeddings generated by BERT through multiple
feed-forward layers.

Our research also leverages the contributions of Jiang et al. (2020). This work proposes a novel fine-
tuning framework that addresses the challenge of maintaining model generalizability to new, unseen
data. By integrating smoothness-inducing regularization and Bregman proximal point optimization,
the SMART framework significantly mitigates the risks of overfitting during fine-tuning.

4 Approach

4.1 Baseline Bert

In the initial phase of our project, we focused on implementing key components of the BERT
architecture as described by Devlin et al. (2019). Our baseline mini-BERT model processes input
sentence pairs, tokenized into a sequence of 512 tokens, inclusive of the special CLS and SEP tokens.
It incorporates an embedding layer that combines word embeddings (for 512 tokens), position
embeddings (for 512 positions), and token type embeddings (for 2 token types), each contributing to
an embedding dimension of 768.

Task-specific adaptations are made atop the mini-BERT structure without altering its foundational
layers:

• Sentiment Classification (SST): Performs multi-class classification using cross-entropy
loss function.

• Paraphrase Detection: Performs Binary classification on concatenated BERT embeddings
using binary cross-entropy loss function.

• Semantic Textual Similarity (STS): Performs Linear Regression on concatenated BERT
embeddings using Mean Squared Error loss function. This approach was later refined to
classify based on cosine similarity between the input embeddings, converting similarity
scores from the range of -1 to 1 to a scale of 0 to 5, matching the task’s label range.

For each NLP task, we finetune separately on their respective datasets.

4.2 Lexicon Encoder

In the preprocessing phase for tasks involving the analysis of sentence pairs, we adopt a strategy of
concatenating each sentence pair with a separator token in between, resulting in an output format of
[input1; [SEP]; input2] as mentioned in Liu et al. (2019). Following this, we create attention masks
based on these concatenated pairs to inform the BERT model which parts of the input are relevant.
The processed input is then passed through BERT to derive contextual embeddings. A trainable linear
layer is subsequently applied atop these embeddings to produce the final task-specific outputs.

For sentiment analysis, we use the same techniques as the baseline version.
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Figure 1: Lexicon Preprocessing

4.3 Add NN Layers + Cosine Sim to Head

In our effort to boost task-specific performance, we’ve enhanced the model by integrating a sequential
layer structure comprising three linear layers, each followed by batch normalization and GELU
activation functions, into the final output mechanism for each task. This architectural enhancement
substantially enlarges the model’s parameter count, thereby extending the necessary training time.
However, the expected benefit is a significant improvement in the model’s effectiveness (Rebuffi
et al., 2017).

The cosine similarity between two vectors X and Y is defined as:

CosSim(X,Y ) =
X · Y

∥X∥∥Y ∥

This metric evaluates the cosine of the angle between two vectors in a multidimensional space, serving
as a measure of the distance between them. In applications such as paraphrase detection and semantic
textual similarity, this principle is utilized to assess the degree of similarity between two sentences. If
the embeddings generated by BERT are semantically rich, sentences with similar meanings should
produce closely aligned embeddings.

In our framework, to incorporate the cosine similarity between two embeddings, we considered two
methods: substituting the linear layer entirely with cosine similarity, combining the embeddings
with their cosine similarity before inputting them into the linear layer, or augmenting the output
of the linear layer with the cosine similarity as a final step. Prior research indicated that the most
effective approach is to enhance the linear layer’s output by integrating cosine similarity (Reimers
and Gurevych, 2019). In our experiments, we also initially applied this method to both sentiment
analysis and paraphrase detection tasks. However, we soon found that it offered advantages mainly
for Semantic Similarity, leading us to focus our subsequent experiments on this area.

Note that we must add a multiplication factor of 5 to the cosine similarity for semantic similarity
since targets fall in the range of [0, 5].
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Figure 2: Task-Specific NN Layers + Cosine Sim

4.4 Round-Robin

To foster a model that better generalizes across these varied tasks, we adopted a multi-task learning
strategy, specifically implementing a batch-level round-robin technique. Starting with the pre-trained
BERT framework, we alternate between the sentiment analysis, paraphrase detection, and semantic
textual similarity datasets, maintaining a consistent batch size throughout the process. In each
iteration, we perform updates on the parameters relevant to the current task dataset in a single pass,
aiming for a more integrated and generalized learning outcome across tasks.

4.5 Additional Transform Layers

The motivation to expand our model with additional transformation layers stems from the need to
enhance the network’s capacity for feature representation and improve its generalization abilities
across diverse tasks. By integrating more layers, such as Batch Normalization, GELU activation
functions, and Dropout, to each task we hoped to achieve a deeper and more complex model
architecture.

4.6 Augmenting SST Training Examples

We noticed that the performance of SST was falling short compared to that of STS and paraphrase
detection. We believe that volume and diversity of training data significantly influence model
performance (Jiang et al., 2020). With SST dev test having suboptimal development scores in SST,
we tried enhancing the dataset to improve these metrics.

To achieve this, we implemented two primary methods. Firstly, we utilized a back-translation process,
where selected sentences were translated into a foreign language and then back to English, producing
subtle variations of the original sentences. Secondly, we developed a GPT-based tool to generate
semantically similar sentences with the same sentiment polarity. These methods effectively expanded
our SST dataset, introducing more nuanced examples for the model to learn from.

4.7 SMART Reg

Within the SMART framework, Smoothness-Inducing Adversarial Regularization and Bregman Proxi-
mal Point Optimization are key components that contribute to the model’s performance enhancement.

4.7.1 Smoothness-Inducing Adversarial Regularization

This approach introduces a regularization term into the model’s loss function to promote the gener-
ation of smooth and continuous outputs. The technique leverages adversarial loss to quantify the
discrepancy between the model’s actual output and a smoother version of this output, which can be
achieved through low-pass filtering or similar operations. For a given model f(·; θ) targeting a task
with input embeddings xi and outputs yi (viewed as labels for simplicity), the optimization goal is
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formulated as:
min
θ

F (θ) = L(θ) + λs ×Rs(θ)

Here, L(θ) denotes the task-specific loss function, Rs(θ) the regularization function, and λs a
fine-tuning parameter that adjusts the regularization strength to match task variability.

4.7.2 Bregman Proximal Point Optimization

To mitigate aggressive parameter updates, the SMART framework incorporates Bregman proximal
point optimization, applying a significant penalty for large, abrupt model adjustments. This technique
optimally minimizes a convex function f(x) within convex constraints through an iterative resolution
of proximal sub-problems. Each iteration applies a proximal operator to the current iterate x to
produce x + 1, progressively approaching the optimal solution. When applied to the pre-trained
BERT model f(·; θ), the update for iteration t is given by:

θt+1 = argmin
θ

F (θ) + ν ×DBreg(θ, θ
t)

The Bregman PPO divergence, DBreg(θ, θ
t) = ls(f(x̄i; θ), f(xi, θ

t)), with ν acting as a tuning
parameter for the divergence, aims to constrain updates to a defined neighborhood around the previous
iteration, effectively establishing a trust-region-like regularization to curb overly aggressive updates.

5 Experiments

5.1 Data

• Stanford Sentiment Treebank (SST) Dataset: Comprising 11,855 single sentences from
movie reviews, this dataset includes 215,154 unique phrases derived from parse trees
generated by the Stanford parser. Each phrase has been annotated by three human judges
with labels ranging from negative, somewhat negative, neutral, somewhat positive, to
positive. Our goal is to utilize BERT embeddings to predict the sentiment classification
labels of these sentences.

• Quora Dataset: Featuring 400,000 question pairs with binary labels indicating whether the
questions are paraphrases of each other (labelled as No and Yes), this dataset is employed to
ascertain if a pair of sentences are paraphrases.

• SemEval (STS) Benchmark Dataset: This dataset consists of 8,628 sentence pairs, each
labelled with a similarity score ranging from 0 (unrelated) to 5 (equivalent meaning). Our
objective is to assess the semantic textual similarity of these sentence pairs using BERT
embeddings.

5.2 Evaluation method

To evaluate the performance of our models across the three tasks, we adopted a straightforward
qualitative evaluation approach as follows:

1. Sentiment Classification: Accuracy was determined based on the proportion of labels
correctly predicted by the model in the Stanford Sentiment Treebank dataset.

2. Paraphrase Detection: Accuracy was similarly calculated according to the number of
correctly identified paraphrase labels in the Quora dataset.

3. Semantic Textual Similarity: Accuracy was assessed using the Pearson correlation coef-
ficient between the predicted similarity scores and the actual labels in the SemEval STS
Benchmark dataset, reflecting the degree to which the model’s predictions align with human
judgment.

5.3 Experimental details

In our investigation, we methodically explore distinct fine-tuning techniques, evaluating each model
variant’s average performance across the Stanford Sentiment Treebank (SST), Quora, and Semantic
Textual Similarity (STS) datasets.
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For all experimental setups described in Approach, we employ the ADAM optimizer for training.
Each dataset utilizes an identical feedforward head attached to BERT. In scenarios where BERT
parameters are frozen and only the weights of the linear layer are trained (pretrain), we adopt a
learning rate of 1e − 3. Conversely, when BERT parameters are also being updated (finetune), a
lower learning rate of 1e− 5 is utilized to prevent overfitting. Due to limitations imposed by GPU
memory, we set the batch size to 32 and conduct each experiment over the course of 10 epochs with a
0.3 dropout rate, selecting the iteration demonstrating peak performance on the development set as
our model of choice.

To assess the viability of each fine-tuning approach, we opted to gauge its effectiveness based on
the development set accuracies obtained during the pre-training phase of the respective model. This
decision was influenced by the extensive range of features we intended to explore; dedicating time to
fully fine-tune each model under every strategy would be exceedingly time-consuming. Consequently,
should there be a noticeable drop in the pre-training performance, we resolved to forego fine-tuning
the model using that particular approach.

5.4 Results

Below is a table of our accuracies from our various models on the Pretrain and Develomental Datasets
as well as train times.

Pretrain Finetune

Method Sentiment Acc Paraphrase Acc STS Corr Sentiment Acc Paraphrase Acc STS Corr

A 0.307 0.635 0.198 0.374 0.721 0.42
B 0.323 0.666 0.244 0.415 0.765 0.54
C 0.381 0.691 0.309 0.458 0.77 0.575
D 0.381 0.694 0.452 0.396 0.855 0.87
E 0.394 0.712 0.508 0.503 0.883 0.822
F 0.408 0.645 0.586 0.48 0.883 0.752
G 0.386 0.707 0.496 -
H 0.37 0.707 0.396 -

Table 1: Pretrain and Finetune Dev Acc for Pretrain and Finetune tasks

A

Method Pretrain Finetune Figures

A 0.4 0.5
B 0.45 0.55
C 0.6 1.2 4, 5
D 0.4 0.5
E 0.7 1.4 6, 7
F 0.75 1.5 8, 9
G 0.8 - 10
H 2.4 - 11,

Table 2: Train time (in hours) per epoch for Pretrain and Finetune tasks. For specific method details
see Figures 4 and 5.

Legend:

A: Manual Cosine, 0.5 Split, w/ NN

B: Expanded 3 layers for each task, plus weighted cosine split

C: Round Robin, Batch Norm, Weight Decay, expanded 3 layers, weighted split

D: Lexicon encode

E: Lexicon encoder, Expanded 3 layers, weighted split, Batch Norm, Weight Decay, Round
Robin
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F: Forward Function change, Lexicon encoder, Expanded 3 layers, weighted split, Batch Norm,
Weight Decay, Round Robin

G: More sst training examples + E
H: SMART Regularization + E

Our initial modification aimed to integrate cosine similarity into our model while retaining the
advantages of a Neural Network (NN), leading to a balanced 0.5 split specifically for the semantic
textual similarity task. Recognizing the need for dynamic adaptability, we introduced learnable
weights, allowing the model to adjust the emphasis between cosine similarity and NN based on
performance.

To broaden our focus to other tasks, we enhanced the neural networks for each task by incorporating
Batch Normalization, Dropout, and Gaussian Error Linear Units to introduce non-linearities, which
as seen improved accuracies by a very small amount.

We then shifted from task-specific training to a more balanced approach by implementing Round
Robin training, which alternates between tasks within each epoch. This method along with Batch
Norm, and Weight Decay significantly benefited all tasks, indicating a positive overall impact on the
model.

Exploring further, we integrated Lexicon encoding for Paraphrase and Semantic Textual Similarity
tasks, as it improved our base model substantially so we decided to add it out our main model as seen
by the accuracies.

From here we tried other ideas as well such as transforming the Forward function in the Multi-
taskBERT class and introducing additional dropout. This as shown negatively affected performance,
so we didn’t pursue this idea further.

We also aimed to expand sentiment classification data through back-translation and a GPT-wrapper in
order to come up with more data samples. As seen in the pretraining phase it did not yield significant
improvements and lead to GPU problems when fine tuning.

Lastly, we experimented with SMART regularization to address overfitting, evidenced by the dis-
crepancy between training error and accuracy. Despite its potential, GPU limitations and its great
increase in training times discouraged us from this approach.

6 Analysis

Our experimentation highlighted the efficacy of incorporating lexicon encoding into our model,
which notably enhanced its performance. We attribute this success to the inadequacy of merely
concatenating embeddings from two sentences and processing them through a linear layer, especially
for tasks like Quora and STS, where understanding the symmetric relationship between sentence
pairs is crucial. Lexicon encoding effectively bridges this gap by providing additional semantic cues
that enable more nuanced comprehension of sentence relations.

Moreover, the implementation of round-robin training proved to be a pivotal strategy, especially
observed after integrating lexicon encoding. Initial results showed a discrepancy between sentiment
analysis performance and individual development set accuracies for the Quora and STS tasks,
suggesting that solely relying on lexicon encoding was insufficient for holistic model improvement
across tasks. The adoption of round-robin training not only addressed this issue but also underscored
its importance in achieving superior multitasking outcomes. It indicated that systematic alternation
between tasks during training is essential for the model to generalize effectively across different NLP
tasks, thereby enhancing its overall utility and performance.

On the other hand, our experiments also shed light on the limitations of certain techniques. For
instance, attempting to implement SMART regularization and adding SST training examples both led
to GPU memory constraints, primarily due to its complex computational demands. This difficulty was
compounded by our model’s already extensive parameter set, derived from adding various features
including lexicon encoding and additional neural network layers, which strained our GPU memory
capacity, even after reducing batch sizes.

Similarly, the introduction of extra feedforward layers unexpectedly reduced accuracies. This
reduction could stem from multiple reasons. First, increasing model complexity does not always
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correlate with better performance, especially if the added layers contribute to overfitting. With more
parameters to train, the model may focus too much on the training data’s noise, impairing its ability
to generalize to unseen data.

Below highlights the model architecture of our best model:

Figure 3: Model Architecture

7 Conclusion

In our study, we explored the impact of integrating cosine similarity and additional NN Layers to
task heads, lexicon preprocessing, round-robin training, additional feed forword layers, and SMART
regularization on the performance of an enhanced BERT model. Our experiments revealed the most
effective pretrained + finetuned model was enhanced with lexicon preprocessing and cosine similarity
on the STS Head trained in a round-robin manner across three datasets different, and equipped with 3
linear layer prediction heads. By integrating these approaches, we achieved a 46% improvement in
performance over the baseline method. However, we noticed that although these results were better, it
came at the cost of increased training complexity, as it more than doubled training time (refer to A).

This endeavor deepened our understanding of BERT’s architecture, explored various enhancement
techniques for this model, and provided insights into the broader research landscape of performing
NLP tasks.

Further research should investigate the potential benefits of SMART regularization on the model’s
performance, especially considering its untested promise due to GPU memory constraints encountered
in our initial attempts. Additionally, a more granular analysis of the model’s features through separate
testing could provide clearer insights into their individual contributions and effectiveness.

8



References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of

deep bidirectional transformers for language understanding.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-trained natural language models through princi-
pled regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2177–2190, Online. Association for Computational Linguistics.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4487–4496, Florence, Italy. Association for
Computational Linguistics.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. 2017. Learning multiple visual domains
with residual adapters.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need.

A Appendix (optional)

9

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/1706.03762


Figure 4: C Pretrain training Figure 5: C Finetuning training

Figure 6: E Pretrain training Figure 7: E Finetuning training
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Figure 8: F Pretrain training Figure 9: F Finetuning training

Figure 10: G Pretrain training Figure 11: H Pretrain training
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