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Abstract

Zhou et al. (2023) demonstrate that LLMs perform poorly in question-answering
tasks when prompted to begin with high certainty expressions, as opposed to
low certainty expressions. Our core goal for this paper is to use SAPLMA, as
introduced by Azaria and Mitchell (2023), to show that LLMs misunderstand what
it means to have 100% certainty, conflating its meaning with that of 0% certainty.
We note that our results weakly reject our original hypothesis—in other words,
they show that there may exist a reasonable internal intuition within Mistral 7B
regarding the true meaning of 100% certainty. Specifically, we find that when
feeding sentences prefixed markers of 0%, 70%, 90%, and 100% certainty into
our LLM and performing true-false classification using the corresponding LLM
activations, our SAPLMA classifiers display similar performances between the
final 3 prefixes. This finding lightly suggests that LLMs may know that they’re
lying when incorrectly answering questions after being prompted to respond with
complete certainty. Furthermore, we make significant discoveries about SAPLMA:
we demonstrate that 1) SAPLMA continues to perform well using Mistral 7B, 2)
SAPLMA may be sensitive to the particular sentence structure used during testing,
and 3) the necessary training duration for SAPLMA classifiers may correlate to the
average training sentence length.

1 Key Information to include

• Mentor: Caleb Ziems

2 Introduction

Zhou et al. (2023) give us a closer look into how models perform in question-answering tasks when
prompted to begin their sentences with epistemic markers of varying degrees of certainty (e.g. “I’m
certain it’s”, “It could be”) (p. 17). They find that at extreme levels of certainty, models perform
extremely poorly (Zhou et al., 2023). We find this counter-intuitive result to be very interesting. To
our best knowledge, no other research has tried to understand this problem of why models perform
so poorly under complete certainty. Our motivation with this research is to help fill this gap in
understanding. We aim to study why models lie, in order to help limit them from doing so.

When focusing on epistemic certainty markers with percentages (e.g. “I’m 70% sure it’s”), Zhou
et al. (2023) find that LLMs consistently have the worst answer accuracy when values of 0% and
100% were used. They observe from a widely used pretraining dataset, The Pile, that there is very
frequent co-occurrence between usage of “100%” and uncertainty (Zhou et al., 2023). Furthermore,
they hypothesize: “both the use of negation with "100%" and the general lack of use of "100%" with
expressions of certainty contribute to the lowered performance of these prompts” (Zhou et al., 2023, p.
7). We find this hypothesis to be very convincing, and speculate that there may even be extralinguistic
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compounding factors, such as the Dunning-Kruger effect, where folks with lower levels of familiarity
with a topic tend to be overconfident in their knowledge.

We generalize the hypothesis made by Zhou et al. (2023), arguing that the model misunderstands
what it means to have 100% certainty. Essentially, we hypothesize that the model roughly internally
equates 100% certainty to mean 0% certainty.

To test our hypothesis, we leverage “Statement Accuracy Prediction, based on Language Model
Activations (SAPLMA)” (p. 5), as introduced by Azaria and Mitchell (2023). As the name suggests,
SAPLMA features a binary classifier which is fed as input the activations of one of the layers of the
LLM (Azaria and Mitchell, 2023) as it processes the last token of a statement. Additionally, they
provide a balanced true/false dataset which is organized by topic (Azaria and Mitchell, 2023).

Our approach features three experiments. First, we perform a preliminary experiment that successfully
demonstrates that SAPLMA continues to surpass the baselines set by Azaria and Mitchell (2023)
when using Mistral 7B. We show that our models consistently achieve their best accuracies when fed
as input the activations from layers closer to the center: per-topic, we only find peak performances in
layers 16 and 20, as opposed to 24, 28, and 32.

In our second experiment, we create and test on an augmented dataset, where the statements in the
dataset are prefixed with various numerical epistemic markers of certainty: “I am X% certain that”,
using 0, 70, 90, and 100 for values of “X”. Our expectations were that for the 0% and 100% markers,
our classifiers would have accuracies at or below 40%, while for the 70% and 90% markers, our
classifiers would reach or exceed 60% accuracy. Ultimately, all of our reported average accuracies
for this experiment perform slightly better than 50%, which meets neither of our expectations. While
Azaria and Mitchell (2023) demonstrate that SAPLMA performs well on out-of-distribution topics,
we find that they do not perform well on out-of-distribution sentence structures.

For our final experiment, we only change our training method. Our intention with this experiment
is to create a closer alignment between the distributions of the training and test data by extending
our list of prefixes in our augmented dataset beyond numerical prefixes. We use these statements
with non-numerical prefixes for training only. We now change the lens through which we interpret
our hypothesis: instead of focusing on the certainty of the prefix, we focus on whether the prefix
affirms or rejects the statement that follows. During training, we flip the labels for statements with
denying prefixes. During testing, we expected to create a graph with similar qualitative properties
to Figure 4 by Zhou et al. (2023), where the accuracies for 0% and 100% are significantly lower
than for intermediate percentages. Our findings suggest that our hypothesis may be incorrect: that
Mistral 7B does not conflate the meanings of 0% certainty and 100% certainty. This implies that in
the experiments by Zhou et al. (2023), that their LLMs may internally understand that they’re lying
when incorrectly generating answers beginning with claims of high levels of certainty. Additionally,
we find that it takes an order of magnitude longer in order to train our SAPLMA classifiers on these
augmented statements (which are, on average, roughly double the size of the original statements).

3 Related Work

The experiments and results by Zhou et al. (2023) build a strong foundation for our work, showing
a stark difference in performance on causal language modeling for question-answering tasks when
prompting the LLM to begin with prefixes of varying levels of certainty. Our work varies from theirs
in three different ways. First, we focus on LLM behavior when they interpret text, as opposed to
when they generate it. This is closely tied to the second core difference, that our chosen task is
true/false classification, instead of question-answering. Finally, while Zhou et al. (2023) employ a
black box approach to studying LLMs, we directly access (but do not modify) the hidden states of
our LLM.

Our approach is heavily inspired by that of Azaria and Mitchell (2023). We utilize their baselines,
their proposed method SAPLMA, several of their experiment details, and their provided dataset. We
aim to explore past the breadth of their work by testing on an augmented version of their dataset,
which allows us to study how various epistemic markers affect the beliefs of LLMs.
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4 Approach

4.1 Building on Existing Work

We use SAPLMA to build various classifiers for statement truthfulness that take in the activations of
a Large Language Model (LLM) after having been fed a statement (Azaria and Mitchell, 2023).

Taking inspiration from Zhou et al. (2023), we use one format of numerical epistemic marker prefixes:
“I am X% certain that”. For the values of “X”, we use 0, 70, 90, and 100. 70 and 90 were chosen
because Zhou et al. (2023) report them to achieve the best accuracies in question-answering tasks.

Unlike in the previously mentioned experiments, we utilize Mistral 7B, as it is shown to have many
performance benefits over other recent LLMs (Jiang et al., 2023).

4.2 Preliminary Experiments

Experiment 1. Prior to testing our hypothesis, we aim to strengthen the validity of our results by
demonstrating that we can successfully exceed the baselines set by Azaria and Mitchell (2023), as
shown in Table 1 of their paper, when using Mistral 7B.

At the time of writing, the official implementation1 for the work by Zhou et al. (2023) is in progress.
Fortunately, they show that their findings hold for various GPT3 and GPT4 models (Zhou et al., 2023).
We expect Mistral 7B to have similar performance, and save this extra verification for future work.

4.3 Main Experiments

Experiment 2. Our second experiment features an augmented dataset used at test time, where each
statement is prefixed with various numerical epistemic markers. More information regarding these
markers is provided in the Experiments section below, as well as in Appendix A.1. We designate
one topic within the augmented dataset at a time as the test topic. These are our own modifications.
Similar to Azaria and Mitchell (2023), we use the original dataset for training, but leave out the test
topic. We average our results over all topics and provide an accuracy for each pair of chosen prefixes
and LLM hidden layers.

Experiment 3. For our final experiment, we differ our training method but keep the rest the same as
in our second experiment. Our goal here is to create a better alignment between our training data and
our test data in order to encourage our classifiers to account for prefixes. We extend our augmented
dataset by adding 24 non-numerical prefixes, where each prefix either affirms or rejects the statement
that follows. For these prefixes, we vary several linguistic categories (e.g. evidentiality, level of
certainty, perspective, etc.), but keep an equal number of affirming and rejecting prefixes. These
prefixes were generated with the help of Table 6 from Zhou et al. (2023) and the help of Gemini2

by Google. We divide our augmented dataset, using only the numerical prefixes for testing, and the
remaining for training. Our process for training and testing is similar to what we did previously:
using only the augmented dataset, we iteratively select a topic as the test topic, and train on the
remaining topics. Since we have a relatively small number of prefixes, we incorporate dropout in
order to prevent our models from overfitting to the training prefixes. This is our own modification to
the SAPLMA classifier.

4.4 Baselines

Since both of our datasets are balanced with true and false statements for each topic, we can set a
baseline at 50% accuracy for random guessing on both datasets.

For demonstrating the effectiveness of SAPLMA with Mistral 7B, we utilize the same baselines as
found in Table 1 of the work by Azaria and Mitchell (2023). This includes accuracy scores for the
original dataset computed using BERT, 3-shot learning, 5-shot learning, and direct LLM prompting.

1https://github.com/katezhou/navigating_the_grey
2https://gemini.google.com
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4.5 Implementation

While there exists a community-provided implementation of SAPLMA on GitHub3, we find that
we are able to much more easily accommodate the needs of our experiment by writing our own
implementation. Though this resource has been helpful in understanding how SAPLMA works
behind-the-scenes, we claim our implementation to be our own original work. All code for our
research can be found at: https://github.com/joshuafajardo/cs224n-proj.

5 Experiments

5.1 Data

Azaria and Mitchell (2023) provide a true-false dataset of consisting of 6,084 statements across 6
different topics. We designate two different true-false datasets, used for true-false classification:

1. Original Dataset: This is the dataset provided by Azaria and Mitchell (2023), used as-is.

2. Augmented Dataset: To produce this dataset, each statement within the original dataset is
prefixed with each of 28 epistemic markers described in our Approach. These 28 prefixes
include 4 numerical prefixes used for testing and 24 non-numerical prefixes (12 affirming
and 12 rejecting) used for training. The full list of prefixes can be found in Appendix A.1
For each augmented statement, we also include the augmented label. These augmented
labels are only used for training. For statements with affirming prefixes, their augmented
labels are equal to their original labels. For rejecting prefixes, we flip the original labels to
get the augmented labels. During testing, we do not use these augmented labels, and instead
expect accuracies worse than 50% for rejecting prefixes.

5.2 Evaluation Method

For the first experiment, we simply require that all of our accuracies surpass the baselines set by
Azaria and Mitchell (2023).

For experiments 2 and 3, using SAPLMA, we must achieve at least 60% accuracy, averaged across
all topics within the augmented dataset, for statements with the 70% and 90% prefixes. Conversely,
we must achieve no greater than 40% accuracy, on average, on the augmented dataset for statements
with the 0% and 100% prefixes.

5.3 Experiment Details

Our experiment details are modeled after Azaria and Mitchell (2023).

For all experiments, we use an A100 on Google Colab. It takes approximately 90 minutes to load
Mistral 7B and compute the activations for both datasets.

Experiments 1 and 2. For each topic, we train 5 different models, which each take in the activations
from a different layer of Mistral 7B—our chosen layers are 16, 20, 24, 28, and 32. We train each
model for 5 epochs with the binary cross-entropy loss and a batch size of 32. We use the Adam
optimizer with an initial learning rate of 0.001 for all models. For experiments 1 and 2 combined, it
takes approximately 2 minutes to train and evaluate all 60 truth classifiers.

Experiment 3. Similar to experiment 2, we use the hidden states from layers 16, 20, 24, 28, and 32
of Mistral 7B. Since we’ve added new prefixes, our training data is now 24 times larger. Nonetheless,
we show our training results after 5 epochs and 20 epochs, as we observe that our training accuracy
does not significantly improve (beyond 50%) after only one epoch. We now train with a batch size of
4096 for better efficiency. For all fully connected layers except for the last, we use a dropout rate of
0.2. It takes approximately 26 minutes in order to train and evaluate all 60 truth classifiers.

4

https://github.com/joshuafajardo/cs224n-proj


Table 1: SAPLMA test accuracies on the original dataset with Mistral 7B. Baselines were generated
by Azaria and Mitchell (2023).

Layer Cities Elements Companies Animals Facts Inventions Average
16 0.5501 0.6591 0.7758 0.7480 0.7210 0.6073 0.6695
20 0.5576 0.6247 0.6908 0.7331 0.6215 0.6096 0.6371
24 0.5432 0.5710 0.6233 0.6974 0.6852 0.5719 0.6072
28 0.5267 0.5624 0.6692 0.6032 0.7015 0.5913 0.5998
32 0.5542 0.5796 0.5575 0.6310 0.6460 0.5890 0.5857

BERT 0.5357 0.5537 0.5645 0.5228 0.5533 0.5302 0.5434
3-shot 0.5410 0.4799 0.5685 0.5650 0.5538 0.5164 0.5374
5-shot 0.5416 0.4799 0.5676 0.5643 0.5540 0.5148 0.5370

It-is-true 0.523 0.5068 0.5688 0.4851 0.6883 0.584 0.5593

Table 2: Test accuracies for SAPLMA models trained on the original data and evaluated on statements
augmented with numeric epistemic markers. Accuracies are averaged across all topics.

Layer 0% 70% 90% 100%
16 0.5374 0.5413 0.5334 0.5484
20 0.5343 0.5257 0.5318 0.5369
24 0.5172 0.5173 0.5210 0.5241
28 0.5172 0.5129 0.5180 0.5152
32 0.5172 0.5272 0.5242 0.5168

5.4 Results

Experiment 1. Table 1 shows that SAPLMA with Mistral 7B, averaged across all topics, outperforms
all baselines set by Azaria and Mitchell (2023). Our gathered test accuracies reach our expectations;
given that SAPLMA has been shown to succeed for LLAMA2-7b and OPT-6.7b, we naturally expect
that it should also work other LLMs like Mistral 7B. We note that our models very consistently
achieve their best accuracies in layers 16 and 20. This behavior is similar to what Azaria and Mitchell
(2023) report: for OPT-6.7b, they report their best scores in layers 20 and 24, and for LLAMA2-7b,
they report best scores in only layer 16.

Experiment 2. Table 2 shows that all trained models, on average, perform very slightly better than
50%, and that none of our accuracies exceed 60%. Additionally, we find very little difference in
performance between the various numerical epistemic markers, meaning our current findings do not
support our hypothesis. We believe that this result may be because during training, our models have
overfit to the structure of sentences within the original dataset. This was unexpected, as we expected
SAPLMA to find an internal representation of truth that would generalize well to other sentence
structures.

Experiment 3. Table 3 displays our test results for experiment 3. After 5 epochs, we find that all of
our accuracies are within only 3% of our baseline of 50%. While all of our accuracies for the “0%”
prefix are below 50%, they only deviate from 50% by up to 0.0047%, which is not significant. We do
find that the other prefixes are able to achieve slightly higher scores, correctly guessing the label for
around 2.5% more test cases.

After 20 epochs, we get some very interesting results. We initially expected there to be very little
change in the test accuracies between 5 epochs and 20 epochs. To our surprise, we see that the
differences in performances across prefixes is much more pronounced after 20 epochs: the accuracies
for the “0%” prefix all stay within roughly 1% of our baseline of 50%, while the highest accuracies
for the remaining prefixes now hover around 55%. While this does not reach our anticipated threshold
of 60%, we find these results to lightly suggest that our hypothesis may be false.

3https://github.com/balevinstein/Probes
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Table 3: Test accuracies for SAPLMA models trained and tested on different parts of the augmented
dataset. For training, statements without numerical prefixes were used, and the labels were flipped for
denying prefixes. For testing, statements with numerical prefixes were used. No labels were flipped
during testing.

Layer 0% 70% 90% 100% Num Epochs
16 0.4983 0.5265 0.5280 0.5241 5
20 0.4953 0.5177 0.5193 0.5180 5
24 0.4978 0.5150 0.5136 0.5196 5
28 0.4994 0.5086 0.5073 0.5103 5
32 0.4984 0.5048 0.5055 0.5022 5

16 0.5063 0.5540 0.5518 0.5486 20
20 0.4917 0.5224 0.5205 0.5168 20
24 0.4991 0.5173 0.5118 0.5122 20
28 0.5104 0.5152 0.5205 0.5159 20
32 0.4960 0.5121 0.5147 0.5101 20

6 Analysis

6.1 Experiment 1

Isolating the best test accuracies for each topic in Table 1, we find that SAPLMA achieves the best
performance for the “companies” and “animals” topics, and that it achieves the worse performance
for the “cities” topic. In some ways, this is different from what is observed by Azaria and Mitchell
(2023): they found highest accuracies in the “cities” and “companies” topics, and found performance
on the “animals” topic to be on the lower end. We believe that this may reflect some differences in
the contents of the datasets used to train the LLMs used by them and by us.

6.2 Experiment 2

We note that, across all prefixes and layers, our models consistently achieve achieve (albeit mildly)
above-average accuracies. This can be easily explained by the fact that the entirety of each original
statement can be found in our augmented statements. For example, an augmented version of “Burma
is a name of a country” is “I’m 70% certain that Burma is a name of a country.”

6.3 Experiment 3

Contrary to our expectations, we observe in Figure 1 that we do not achieve similar accuracies
between the 0% and 100% prefixes, and instead find a grouping between the accuracies for the 70%,
90%, and 100% prefixes. We find there to be two likely causes for this. The first reason could be
that Mistral 7B understands the true meaning of 100% certainty. The second reason could be that
in our training dataset, since our augmented training data includes the correct augmented labels
for statements prefixed with high certainty markers, we may be inherently helping our classifiers
distinguish between uncertainty, high certainty, and complete certainty.

Training Time. While the training section of our augmented dataset is 24 times larger than the
original dataset, there are a large amount of redundancies: each statement is replicated 24 times,
and each prefix is prepended to several thousand statements. Therefore, we initially anticipated the
models in our final experiment to train fairly quickly, in comparison to the models trained on the
original dataset. To our surprise, it required a considerable number of epochs in order for our models
to get close to local minima. In Table 4, we display our training accuracies after 5 epochs and after
20 epochs.

Test Accuracies After 5 and 20 Epochs. We show the average test accuracies after both 5 and 20
epochs in Table 3, and observe observe a considerable change in the test accuracies. This completely
defied our expectations: we initially expected that between 5 and 20 epochs, our models would be
overfitting to the training prefixes. Notably, we see that the characteristics of our results are much
more pronounced after 20 epochs, as illustrated in Figure 1. One potential cause is that because the
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Figure 1: Heat maps for the test results for experiment 3 after 5 epochs and 20 epochs, accordingly.

sentences from which our activations are gathered are now much longer, the information stored in
these activations may be much more dense, thus making it harder for our classifier to find the LLM’s
representation of truth. For example, after augmentation, the original sentence, “Thimphu is a name
of a city” can become “If I had to guess, I would deny that Thimphu is a name of a city”; in this case,
the length of the sentence becomes more than twice as long. Thus, we claim that the average training
sentence length may have an impact on the number of epochs required for SAPLMA classifiers to
find the representation of truth.

Better Performance in Earlier Layers. Finally, we also observe that our models achieve more
greater accuracies when trained on the activations of the earlier layers, and considerably worsen on
the final layer. This may be explained by the intuition that, as mentioned by Azaria and Mitchell
(2023), the final layers are mainly concerned with token generation.

Table 4: SAPLA training accuracies for experiment 3 after 5 epochs and 20 epochs. Models were
trained using the augmented dataset. Topics in heading are the topics that were held out during
training.

Layer Facts Animals Cities Companies Elements Inventions Num Epochs
16 0.6157 0.6211 0.5880 0.6236 0.6075 0.5961 5
20 0.5821 0.5963 0.6039 0.6041 0.5889 0.5837 5
24 0.6081 0.5931 0.5769 0.5982 0.5845 0.5795 5
28 0.5848 0.6284 0.5708 0.6005 0.5802 0.5763 5
32 0.5092 0.5128 0.5151 0.5059 0.5135 0.5160 5

16 0.6889 0.6977 0.6365 0.7339 0.7664 0.6748 20
20 0.6818 0.6990 0.6367 0.7051 0.6825 0.6641 20
24 0.6847 0.6960 0.6419 0.7024 0.6789 0.6610 20
28 0.6811 0.6965 0.6380 0.7006 0.6796 0.6607 20
32 0.6389 0.6931 0.6241 0.6946 0.6685 0.6544 20

7 Limitations and Future Work

Similar to Azaria and Mitchell (2023), we perform minimal hyperparameter tuning for our exper-
iments, keeping all hyperparameters the same for each experiment (except layer number). It may
be possible that certain configurations would work better for certain topics and/or LLM layers. One
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avenue for future work could be to find the maximum average test accuracies that can be achieved
using SAPLMA on the original dataset.

We again note that we have not verified that the results by Zhou et al. (2023) can be replicated for
Mistral 7B. We defer this verification for future work.

A natural extension to our findings regarding the dip in performance by SAPLMA on out-of-
distribution sentence structures would be to train SAPLMA classifiers using activations from a
wider variety of sentence structures; it would be interesting to see if SAPLMA would continue to
succeed on in-distribution sentence structures and out-of-distribution sentence structures. This would
give a stronger indication that SAPLMA can discover an LLM’s understanding of truth.

One of the main limitations from our third experiment was 1) the limited number of prefixes that we
had gathered for training, and 2) the fact that we only explored using our markers as prefixes. Further
work may look into using controllable paraphrase generation in order to create a wider variety of
markers, marker locations, and sentence structures.

8 Conclusion

In this work, we take a closer look at how LLMs interpret sentences where numerical epistemic
markers of certainty are used, with the goal of understanding what LLMs believe about the meanings
of these epistemic markers. We find that Mistral 7B may have a reasonable internal intuition regarding
the true meaning of 100% certainty, indicating that LLMs may be encouraged to lie when prompted
to begin their responses with statements of complete certainty. Furthermore, we find that SAPLMA
continues to perform well when using the hidden states from Mistral 7B. Additionally, we demonstrate
that while SAPLMA performs well on topics that were not seen during training, it does not seem to
generalize well to sentence structures that were not seen during training. Finally, we provide possible
topics of future work to build on top of our findings.
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Table 5: Prefixes used to create the augmented dataset. Prefixes were gathered by the authors, with
the help of Gemini. Values in the “Affirms/Rejects” column are based on the true meanings of the
prefixes, not the hypothesized LLM interpretations.

Prefix Affirms/Rejects Train/Test
I’m 0% certain that Rejects Test
I’m 70% certain that Affirms Test
I’m 90% certain that Affirms Test

I’m 100% certain that Affirms Test

It is true that Affirms Train
It is false that Rejects Train

It must be true that Affirms Train
It must be false that Rejects Train

It should be the case that Affirms Train
It should not be the case that Rejects Train

It could be true that Affirms Train
It’s probably not true that Rejects Train

I know it’s true that Affirms Train
I know it’s false that Rejects Train
I wouldn’t doubt that Affirms Train

I highly doubt that Rejects Train
I firmly believe that Affirms Train
I do not believe that Rejects Train

I wouldn’t be surprised to find that Affirms Train
I would be shocked to find that Rejects Train

I’m convinced that Affirms Train
I’m not convinced that Rejects Train
I think it’s possible that Affirms Train
I think it’s unlikely that Rejects Train

Not to be certain, but I think that Affirms Train
Not to be certain, but I doubt that Rejects Train
If I had to guess, I would say that Affirms Train

If I had to guess, I would deny that Rejects Train
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