UmBERTo: Enhancing Performance in NLP Tasks
through Model Expansion, SMARTLoss, and
Ensemble Techniques

Stanford CS224N Default Project

May Levin Julian Rodriguez Cardenas
mayl@stanford.edu julianrc@stanford.edu
Department of Computer Science Department of Symbolic Systems
Abstract

This paper describes enhancement methods for optimizing performance with a
minBert model on three distinct NLP tasks: sentiment analysis on the Stanford
Sentiment Treebank, paraphrase detection on Quora Question Pairs, and semantic
textual similarity assessment. Through iterative experimentation, we identified that
unfreezing model weights, extending training to 20 epochs, employing a triple-layer
linear-ReLLU architecture, and incorporating SMARTLoss significantly enhanced
model efficacy. Moreover, our ensemble of ensembles approach, leveraging a
combination of models based on majority voting and performance metrics, emerged
as an effective approach, achieving a test accuracy of 0.678.

1 Key Information:

Mentor: Tim Dai. External Collaborators: None. Sharing Project: No.

2 Introduction

With the introduction of the Transformer in [Vaswani et al.| (2017), the field of natural language
processing witnessed a momentous shift in how models handle and process data. Now, corporations
and individuals are leveraging this technology for their own uses, from automatizing tasks such as
estimating sentiment expressed through text, and entrusting the task of summarizing or drafting
documents to the computer. Our research contributes to this segment of work.

Here we present a minBert model with our particular extensions, fine-tuned for three tasks: sentiment
analysis, paraphrase detection, and similarity evaluation. There are many incentives for achieving
human-level computer performance on these tasks. Websites like Quora and Reddit benefit from
identifying questions that are duplicates of one another, and in the academic world, uncovering
plagiarism is an important and pressing problem. Search engines such as Google and Bing must
measure the similarity between pieces of information as part of their data processing methods.
Websites such as movie review aggregators to social-media platforms enforcing speech guidelines
need an automated way of identifying the sentiment expressed by users.

We explored several ways of adapting a pre-trained minBert model to perform well on these three
downstream tasks. Our main focuses were on the expansion of the architecture to have task-specific
heads, the addition of extra datasets and epochs, and usage of SMARTLoss to explore different types
of learning. Lastly, we combined the highest scoring versions of our various model into a "ensemble
of ensembles" model to achieve our highest accuracy.

Stanford CS224N Natural Language Processing with Deep Learning

3 Related Work

There is extensive prior work on sentiment, similarity, and paraphrase analysis in the context of
Natural Language Processing (NLP). For decades, researchers have explored ways of applying
machine learning methods to these tasks. For example, Pang et al.|(2002) showed that artificial
neural networks can outperform human benchmarks in determining whether reviews are positive or
negative. Since the introduction of the transformer in|Vaswani et al.|(2017) researchers have been able
to push the performance on these tasks (see Naseem et al.|(2020)). Similarly for textual similarity
analysis, there is a long tradition of applying different categorization and analysis methods. However,
nowadays it is the transformer that dominates on leader boards for this task, such as in Jiang et al.
(2019). In terms of paraphrase detection, as noted in|Zhou et al.|(2022), many approaches have been
tried for identifying pairs of sentences with the same content, ranging from convolutional neural
networks, to transformer-based architectures. We note that here too, the highest performances on this
task are dominated by transformer architectures (PapersWithCode).

As such, we take a pre-trained minBert implementation, and explore how we can further improve
performance on the three tasks, by using a significantly smaller amount of data and training time
compared to production-scale models. Considering how resource-intensive production and utilization
of Large Language Models are, it is important to investigate the possibility of well-performing models
of lower size and compute power. In this area|Jiao et al.|(2019) has shown promise with their model
named TinyBERT. This is a language model based on the regular BERT model that is 13% its
size while achieving 97% of its performance. TinyBERT was trained by transferring knowledge
from base BERT by mapping layers from one model to the other, and minimizing the difference in
activation’s between these mapped layers based on some training dataset. One can think of TinyBERT
as a cleverly compressed version of base BERT. Importantly for this project, TinyBERT is proof
that much smaller models can still be almost as good as some of the larger counter-parts. Yet, we
must note that this still requires the regular BERT model, which is trained on a large corpus of data.
Similarly, in this project we utilize a pre-trained minimal version of BERT.

Lastly, a significant portion of our project involves deciding how to fine-tune our model, how to
incorporate more data, selecting hyperparameters, etc. This too is an active area of research. For
instance, |Dodge et al.|(2020) found that initialization and data order can have a significant impact on
performance, but also that there are signs one can observe to decide to stop training a model early.
This is also relevant in this work, since we did not only train multiple models at the same time, but
also had to decide factors such as data utilization and hyperparameter selection.

4 Approach

As a whole, our approach to improve performance on the three downstream tasks was to implement
well-established small improvements to our minBert model separately for several different hyperpa-
rameters, take the best of these, and then combine them to a “best” version model. Given several
best similar performing models, we utilize an ensemble approach. We used the Carina GPU cluster,
training many smaller models and find the best hyperparameters for each one. These models were
run on Nvidia’s Tesla V100. Below, we detail each methodological approach individually.

4.1 Benchmark

Our benchmark was a slightly more complex version of the part 1: minBert implementation model.
Here, the three layer head was fine-tuned on all three datasets given for each task. We recorded train
and dev accuracies for this run at every epoch (default of 10), so we could further compare it to
other models for specificity. We combined the data from each of the three tasks utilizing [PyTorch
Lightning’s Combined Datal.oader class which combines tensors and packages them into labeled
batches inside a “megabatch”. Since each subbatch is tagged with its corresponding task name, we
can then individually train them on their designated tasks while still allowing us to interleave different
data points within the model. This method enhances the model’s exposure to varied data, potentially
improving its ability to generalize across tasks by experiencing a richer mix of inputs during training.
We calculate our benchmark loss in the following manner, with sts_weight = .4,

SST_IOSS = Fcross_entropy7 PQTG_ZOSS = Fbinary_cross_entropy_with_logits
STS loss = Fmse_loss

https://srcc.stanford.edu/systems
https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.utilities.combined_loader.html
https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.utilities.combined_loader.html

The general loss is calculated as follows:

Loss = SST loss + Para_loss + (sts_weight x ST'S_loss) e

4.2 Expanded architecture for multi-task classifier

The base model adds a single dropout and subsequent linear layer to the last layer of the base model,
for each of the three tasks. This translates into each task being solved by doing a linear classification
on the last layer of the base model. This is problematic as relying solely on the final layers reduces the
representation capacity of the model, and does not allow for more complex or non-linear relationships
to be learned.

Therefore, our first approach was to enlarge the architecture of each head for the downstream tasks.
We added different configurations of dropout, linear, and ReLLU activation functions in order to
increase level of expressivity. More so, we experiment with dropout probability, utilizing the default
.3, but then attempting to increase it so that we are able to improve the model robustness. By
increasing the dropout rate, we aimed to encourage the model to learn more independent features that
are directly relevant to the desired output, thereby reducing its dependency on the co-occurrence of
these features, as well as reduce overfitting [andola et al.[(2020).

Base model Extended model

~
NONONONE

Y
Y,

On the left, we have an example diagram of the base model, and on the right an example diagram of a task head with the
extended implementation. We use ReLU activation between the layers, and Dropout only after the BaseBert last layer.

Figure 1: Diagram visualizing the minimal model implementation on the left, and our extended
implementation on the right.

4.3 Addition of more training data

There is a notable relationship between more training data and better model performance |Zhu et al.
(2016). With that in mind, we experimented with extending the original dataset discussed below
in detail, which includes the Quora paraphrase dataset, the Stanford Sentiment Treebank, and the
SemEval STS Benchmark Dataset. We further included two more datasets taken from Hugging Face
repositories. The first one is a|Sentence Compression dataset, which includes pairs of sentences,
one of which is a summary of the other [Filippoval (2016). We used this dataset to further train on
the paraphrase task. The second extra dataset we included is the |“DynaSent: Dynamic Sentiment
Analysis Dataset”, curated by a Linguistics Professor Christopher Potts, which is a dataset of yelp
reviews with ratings 1-5 |Potts et al.|(2020). These were appended to their corresponding dataset tasks.
Since each task had corresponding datasets of different sizes, we also had to decide how to train
once the smallest dataset was entirely utilized. We explored two primary options using the combined
dataloader: halting the training process as soon as the smallest dataset had been entirely consumed, or
continuing training until the largest dataset was completely used - recycling batches from the datasets
that had already been fully encountered.

4.4 Addition of more epochs

Seeing as the benchmark accuracy rates were still increasing significantly at the last epochs (out of
10), this made us believe that the model still had room to improve. Therefore, we increased epoch
time and tested the model for 10,20,40 epochs by changing the parameter value.

https://huggingface.co/datasets/embedding-data/sentence-compression
https://huggingface.co/datasets/dynabench/dynasent/viewer/dynabench.dynasent.r1.all
https://huggingface.co/datasets/dynabench/dynasent/viewer/dynabench.dynasent.r1.all

4.5 SMARTLoss

SMARTLoss (SMoothnessinducing Adversarial Regularization and BRegman pRoximal poinT
opTimization) is used as an addition to the regular loss, as a regularization and robustness-increasing
tool. More formally, it attempts to minimize R,(6) = £ 3" | MaT|| g, —, ||, <els (f(Ti; 0), f(2i,0)).

It works by firstly, making the model smooth in its activation space, which supports overfitting. More
S0, it increases robustness by minimizing the difference between the model output to given input,

with the output to a slightly perturbed version of that input (that is the (z) in the equation). For
SMARTLoss implementation we used a mix of our own code and an implementation of the algorithm
shared by the authors (SmartPytorch).

4.6 Freezing/Unfreezing layers

Initially, training was conducted with frozen weights, utilizing the minBert model that had been
previously trained. However, as our more advanced models started to plateau in accuracy, we
experimented with unfreezing layers (pretraining) by toggling a specific flag, enabling the update
of weights during training. By unfreezing the layers, we aimed to better fit the model to our tasks,
allowing the model to adjust and learn from the specifics of our dataset.

4.7 Contrastive learning

We also attempted to utilize contrastive learning, as described in (Gunel et al.| (2020), as a method
for improving performance during fine-tuning. Contrastive learning works by incorporating an extra
training objective during training, which tries to maximize the distance between outputs for elements
from different classes (thereby capturing the contrasting features between elements of different
classes). Importantly, due to the fact that contrastive learning ultimately aims at pushing the outputs
of a model further apart for different inputs, which can cause competition with the downstream task
used for training, we abandoned this extension of the model (for this attempt, we utilized the author’s
immplementation). Contrastive learning is more appropriate as a pre-training task; due to our data
limitations, we also did not pursue this avenue.

4.8 Combining models

We aimed to combine the model parameters from the best results from each of these above steps, with
the expectation that this would further enhance accuracy by reinforcing various aspects of the model.
Previous literature has supported the idea that integrating the strengths of different models can lead to
a more robust and accurate overall system|Yu et al.|(2023)).

4.9 Ensemble model: a model composed of many models

Lastly, given the variety of models at our disposal, we wanted to explore how we could best combine
these to lead to improved results. We built two initial ensemble models. The first ensemble model
simply chose the best-performing model for each task separately and then took all their results. The
second ensemble model implemented a majority voting system, where similar high ranking models
had their outputs combined, and each answer was selected by majority. Building on these strategies,
a third ensemble model was developed, which used the approach that had the highest dev accuracy
score per task, i.e. if ensemble B has a higher STS dev score then ensemble A, ensemble C choose
that one.

S Experiments

5.1 Data

We utilize three datasets for fine-tuning the model’s capabilities in sentiment analysis, paraphrase
detection, and semantic similarity assessment: the Stanford Sentiment Treebank (SST), Quora
Question Pairs, and the SemEval Semantic Textual Similarity (STS) Benchmark. The SST dataset
comprises of 11,855 single-sentence reviews, each categorically labeled as negative, somewhat
negative, neutral, somewhat positive, or positive. The Quora dataset contains 400,000 question

pairs, each with a binary label indicating whether one question paraphrases the other. The STS
dataset consists of 8,628 sentence pairs, each assigned a continuous similarity score ranging from 0
(unrelated) to 5 (equivalent meaning).

5.2 [Evaluation method

We use pre-defined accuracy (SST, Quora) or Pearson score (SemEval) for the tasks on seperate dev
and train datasets.

5.3 Experimental details

We ran several experiments changing parameters for each approach. Below is each table with bolded
values representing the maximum accuracy model for that task.

5.4 Results

Benchmark 1x Linear 3x Linear 3x Linear, ReLU, 3x Linear & ReL.U,
& ReLU & ReLU & Dropout Dropout = .5
SST dev .376 410 0.416 0.378 401
Paraphrase dev .643 .682 0.688 0.655 .683
STS dev 262 318 0.334 0.278 308

Table 1: Initial Model Performance Comparison for varying architectures

We see that the architecture of 3x linear layers each followed by a ReL.U function has the
best results, together with a dropout rate of .3 (the benchmark value). The additional layers
provide depth to better capture the model’s complexity while ReLU introduces necessary
non-linearity to capture more complex relationship which show to help improve accuracy
results. However, the additional dropout layers as well as the high dropout values likely lead
to significant information loss. A lower dropout rate strikes a better balance by reducing
overfitting without excessively losing valuable information, especially considering these are
smaller datasets.

Benchmark, Epoch =10 Epoch =20 Epoch =40
SST dev .376 402 . 4010
Paraphrase dev .643 .694 695
STS dev 262 357 363

Table 2: Effect of additional Epochs

Epoch iteration value of 40 is technically the best, but marginally, and this increased the
computation time quite significantly. Therefore, we decided to stick with epoch 20 for
following experiments. This phenomenon is further discussed below with figure 2.

Benchmark Appending Data
SST dev 376 201
Paraphrase dev 643 401
STS dev 262 262

Table 3: Effect of Appending More Data

Opposite to what we expected, training on more data lead to worse performance on multiple
occasions. We believe this was due to imbalance in datasets (as in having many more
positive training examples than negative ones for the paragraph task), and also the different
sizes of the training sets. For this reason, in future iterations of our models, we abstained
from using more data.

Benchmark, SMARTLoss =0 SMARTLoss =.02 SMARTLoss=2 SMARTLoss =10
SST dev .376 0.409 0.374 0.377
Paraphrase dev .643 0.699 .635 0.625
STS dev 262 360 0.262 0.277

Table 4: SMARTLoss Threshold Variation

SMARTLoss helped fine-tune our model by preventing overfitting, since that is an issue
we regularly encountered during training. Furthermore, SMARTLoss might have made
the model overall better at processing language, since we would not want minimal random
changes to the embedding inputs to result in significant changes to the behavior of the model.
The most successful SMARTLoss for the base had a value of .02.

We proceed to form our COMBO model, that has 20 epochs, 3x Linear and ReL.U archi-
tecture, with a benchmark dropout, no training data addition, and unfrozen weights. These
choices were made based on the experiments described above. We still experimented with
several SMARTLoss values to see how this impacts the results. More so, we also tested
changing how much we weight the STS loss in our loss function (default = .4) and a separate
experiment trying a "mini cycle" data version that does not repeat data for each task in order
to try to increase the accuracy of the lesser-performing tasks.

Configuration SST dev Paraphrase dev STS dev
Unfrozen Combo Model, SMARTLoss = .02 501 0.823 0.340
Unfrozen Combo Model, SMARTLoss = .2 0.506 0.757 0.370
Unfrozen Combo Model, SMARTLoss = 10 0.502 0.735 0.394
Unfrozen Combo Model, weighing STS loss = (.8) 0.502 0.818 0.359
Unfrozen Combo Model, data on min_cycle version 521 0.761 0.338

Table 5: Advanced Model Configurations and Their Performance

The advanced models varied in their performance across different tasks, as evident from
table 6. The use of unfrozen weights in the models provided flexibility, allowing the models
to adjust more freely to the nuances of each dataset. This approach generally led to better
learning, as it allows the model to refine its pre-learned weights for the specific tasks at
hand. The Paraphrase dev achieved the highest accuracy, likely due to its larger dataset
size, which provided more training examples for the model to learn from. To address
this, several strategies were explored, such as weighting the loss functions of the smaller
datasets (like STS) more heavily, or limiting the repetitions of the larger dataset (using
the mini_cycle version). Adjusting the dataset weighting aimed to equalize the learning
opportunities across tasks, while limiting data repetitions in the mini_cycle version sought
to enhance performance on smaller datasets by preventing overfitting. The exploration
of "SMARTLoss" with varying degrees, from 0.02 to 10, was an attempt to fine-tune the
model’s sensitivity to errors in different configurations. Since we had a mix of successful
models, with different configurations excelling at different tasks, this suggests that the
models might benefit from having larger heads (more parameters) or more flexibility to learn
separate task-specific representations. Therefore, an ensemble model was built to best take
advantage of the multiple models in our arsenal.

SST dev acc. Paraphrase dev acc. STS dev correlation Overall dev

Ensemble 1 0.521 0.823 0.370 677
Ensemble 2 0.535 0.795 0.384 .674
Ensemble 3 0.535 0.823 0.384 .683

Table 6: Ensemble Model Performance

Our final leader board scores utilizing ensemble 3, was: SST test accuracy: 0.528, Para-
phrase test accuracy: 0.825, STS test correlation: 0.360. Overall test score: 0.678.

6 Analysis

6.1 Discussion of effects of extensions on performance

In conducting a detailed analysis of our benchmark model and one of the more effective models
(the unfrozen combo model with SMARTLoss = 0.02, as presented in row 1 of Table 5), several
interesting characteristics emerged. In Figure 2 right side we see a significant initial drop in loss for
the combo model during the first few epochs, which slowly continues to decrease, approaching a
loss of zero. That explains why we saw small gains when training models for more than 20 epochs.
We believe that at this point, the model has maximized it’s generalizability for the given task, and
is mostly just memorizing the training set in a non-general way. Compared to the basic benchmark
model, the combo model has a much lower training loss, but the increase in performance is not
proportional, indicating overfitting.

The figure on the left, showcases the general accuracy between the models, which was computed
as the sum of all training task accuracies with the STS score normalized. The benchmark model’s
accuracy plateaus relatively quickly, indicating early convergence but also suggesting a potential
limitation in adapting to more complex patterns. However, the train and dev fits for the benchmark
model are very aligned, implying a balanced model performance. The combo model shows a very
different narrative, with more signs of overfitting to the training data, evidenced by the large disparity
between training and development accuracies. Despite this, the model retains sufficient generalization
to perform well on the development set. This contradicting behavior might might be enabled by the
SMARTLoss, which can prevent overfitting by smoothing out the model. These aspects help the
model remain robust in predictions despite overfitting.

A related surprising observation is that the SMARTLoss weight that was optimal in one version of
the model across all tasks was also the worst at one of the tasks for another version of the model
(see Table 4, having the best accuracy with SMARTLoss weight = 0.02, whereas in Table 5, we see
a SMARTLoss weight = 0.02 having almost the worst performance on STS, compared to the other
weights). Given that the 0.02 resulted in considerable improvements to the model in Table 4, we
consider that to be a reasonable weight, and therefore consider 10 be a very aggressive weight for
SMARTLoss. As we can see in Figure 2, during the training of the Combo model (whose results are
in Table 5) we quickly get to a point, after just two epochs, where the dev accuracy has plateaued, but
the train accuracy continues to rise slowly; this is a clear indication of overfitting. Since SMARTLoss
is also a smoothness-inducing loss, we hypothesize that this disallows the model to overfit extremely.
In other words, by forcing the model to work in a smooth space, it is harder for it to completely
memorize the training dataset. This effect is even more significant when the SMARTLoss weight is
more aggressive. However, when we are not at risk of overfitting, then it makes sense that we observe
a smaller SMARTLoss weight to be beneficial. This is consistent with the fact that the STS training
set is by far the smaller of the 3 tasks, which makes the model prone to overfitting on that task.

100000

uuuuu

aaaaa

Los

20000 e S

o 1 2 3 4 5 & 7 8 3 w

Figure 2: Left: General Accuracy Comparison between benchmark model and best model. Right:
Train loss Comparison between benchmark model and best model.

6.2 Discussion of the tasks as a whole

An important matter to consider is the different demands that each of the three tasks places on the
model. As we see it, all the tasks require a strong notion of semantics to be successfully answered.
At the same time, none of the tasks have a strong emphasis on syntax or form. For example, two

paraphrases can have an entirely different form (possibly sharing no words in the inputs) but still
share the same meaning. At the same time, two sentences may be highly similar in their structure
and vocabulary, while having only few word changes. The model must be able to pick up on subtle
differences to really understand the meaning of a sentence.

The Semantic Textual Similarity task also requires the model to not just understand a sentence, but
also be able to have a gradient of meaning between two sentences. This is in some way similar to the
paraphrase task; if two sentences are exactly similar (i.e. they mean the same thing) then they are
also paraphrases. Thus, one can make the argument that the similarity and paraphrase task might
benefit from a shared processing.

The Sentiment Analysis task is the one that is the most dissimilar to the other two. Importantly, the
model still needs some level of understanding of semantics and sentence structure, but this task is
only concerned with a small subset of semantics: that of the subjective judgment expressed in an
opinion. We believe that this task places much different demands on the model, as it must have some
conceptual grasp of what things are considered good or bad. For example, an example of a positive
review is as follows. “Light, silly, photographed with color and depth, and rather a good time.” How
does a model learn that “photographed with color and depth” are good things?

7 Conclusion

Our project explored various strategies to enhance performance on the three downstream tasks through
an iterative approach. We discovered that the optimal configuration involves unfrozen weights, a
training duration of 20 epochs, a triple-layer linear and ReLU architecture, and the addition of
SMARTLoss. Furthermore, incorporating an ensemble model, which selects the highest value from
two other ensemble models (majority vote ensemble model or best-performing model per task) proved
to be exceptionally effective.

The primary limitation of our work was the reliance on a smaller dataset and a lack of extensive
hyperparameter exploration. The sequence of our experiments could have been more thought out, for
example, we started with architectural adjustments before optimizing the number of epoch which
might have been more logical to do reversed as a more complex architecture might not exhibit
performance plateaus as early, thereby benefiting more from extended training. Additionally, a more
detailed examination of training loss and accuracy across all models and epochs could have led us to
pay closer attention to potential overfitting issues earlier on.

There are several avenues that we can continue exploring to improve our model. Firstly, we could
improve our method of training the model on larger amounts of data, by not adding more data
to the last layer model training, but instead incorporating it to a prior contrastive learning task or
before the three-head classifier splits. We also can create/find more robust infrastructure to perform a
hyperparameter search, or use some algorithms to tune our hyperparameters. In our project, we have
many parameters to adjust (e.g. the weight of the SMARTLoss and the contrastive loss, the number
of epochs, training schedule, etc.), which we only adjusted one at a time, and in a quasi-random
way. We could leverage libraries such as Ray Tune (https://docs.ray.io/en/latest/tune/index.html) to
optimize our hyper parameters. Another strategy could be used to further explore weight freezing
strategies, as mentioned in|Dodge et al.|(2020), which has the model train many layers, stop most,
and fully-train some more.

In conclusion, our research demonstrates that strategic modifications to the minBert architecture,
particularly utilizing model enlargement, SMARTLoss, and ensembling, can significantly enhance
performance across diverse NLP tasks.

8 Team Contributions

* May contributed to setting up the training infrastructure, adding the combined dataloader,
tuning model parameters, co-writing the paper, and contributing to the part 1 model focusing
on its basic structure and configuration.

* Julian was responsible for implementing SMARTLoss, exploring contrastive learning ap-
proaches, co-writing the paper, and contributing to the development of the part 1 model,
specifically integrating the AdamW optimizer.

References

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
2020. Fine-tuning pretrained language models: Weight initializations, data orders, and early
stopping. arXiv preprint arXiv:2002.06305.

Katja Filippova. 2016. Sentence compression dataset.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoyanov. 2020. Supervised contrastive learning
for pre-trained language model fine-tuning. arXiv preprint arXiv:2011.01403.

Forrest N Tandola, Albert E Shaw, Ravi Krishna, and Kurt W Keutzer. 2020. Squeezebert: What can
computer vision teach nlp about efficient neural networks? arXiv preprint arXiv:2006.11316.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. arXiv preprint arXiv:1911.03437.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. 2019. Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351.

Usman Naseem, Imran Razzak, Katarzyna Musial, and Muhammad Imran. 2020. Transformer based
deep intelligent contextual embedding for twitter sentiment analysis. Future Generation Computer
Systems, 113:58-69.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? sentiment classification
using machine learning techniques. arXiv preprint c¢s/0205070.

PapersWithCode. Papers with code paraphrase leaderboard.

Christopher Potts, Zhengxuan Wu, Atticus Geiger, and Douwe Kiela. 2020. DynaSent: A dynamic
benchmark for sentiment analysis. arXiv preprint arXiv:2012.15349.

SmartPytorch.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems, 30.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. 2023. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. arXiv preprint arXiv:2311.03099.

Chao Zhou, Cheng Qiu, and Daniel E Acuna. 2022. Paraphrase identification with deep learning: A
review of datasets and methods. arXiv preprint arXiv:2212.06933.

Xiangxin Zhu, Carl Vondrick, Charless C Fowlkes, and Deva Ramanan. 2016. Do we need more
training data? International Journal of Computer Vision, 119(1):76-92.

https://doi.org/https://doi.org/10.1016/j.future.2020.06.050
https://doi.org/https://doi.org/10.1016/j.future.2020.06.050
https://arxiv.org/abs/2012.15349
https://arxiv.org/abs/2012.15349

	Key Information:
	Introduction
	Related Work
	Approach
	Benchmark
	Expanded architecture for multi-task classifier
	Addition of more training data
	Addition of more epochs
	SMARTLoss
	Freezing/Unfreezing layers
	Contrastive learning
	Combining models
	Ensemble model: a model composed of many models

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Discussion of effects of extensions on performance
	Discussion of the tasks as a whole

	Conclusion
	Team Contributions

