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Abstract

This paper aims to enhance BERT’s performance across various NLP tasks, in-
cluding sentiment analysis, paraphrase detection and semantic textual similarity,
amongst others by leveraging the SBERT architecture as proposed by Reimers and
Gurevych (2019). It thereby demonstrates SBERT’s utility in generating sentence
embeddings for a broader range of tasks.
Through a combination of experiments, I manage to significantly improve BERT’s
scores on the three tasks and enable it to effectively multitask. These improvements
are mainly driven by (a) cosine-similarity fine tuning, (b) using a mean-pooling
strategy to generate sentence embeddings, (c) concatenating embeddings for para-
phrase detection, and (d) summing individual losses for multi-task learning (Bi
et al., 2022). I find that these adjustments prove to be particularly effective for
paraphrase detection and semantic textual similarity, while doing little to improve
sentiment analysis.
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2 Introduction

The Bidirectional Encoder Representations from Transformers model (from hereon referred to as
"BERT") proved to be an important landmark for the development of foundational models and
more widely for the field of NLP. However, while the base BERT model does well with generating
contextual word representations (Devlin et al., 2019)—and in our case, sentence embeddings—it can
struggle to generalize when tested on multiple downstream tasks, e.g. due to task-specific nuances.
Exhibiting strong performance across different tasks is inherently desirable, as well as being cost-
and resource efficient.

In this paper, I present modifications to the BERT model that allow it to effectively multitask across
the three tasks of sentiment analysis, paraphrase detection and semantic textual similarity (STS).
Sentiment analysis classifies opinions expressed in text to determine whether the sentiment towards
a specific topic or product is positive, negative, or neutral. Paraphrase detection is the task of
determining whether two given text segments express the same meaning, even if they use different
wording or structure. Semantic textual similarity involves assessing the degree to which two pieces
of text carry the same meaning, ranging from being completely unrelated to being semantically
equivalent, even if not identically phrased. Importantly, similarity is measured on a scale, whereas
paraphrase detection uses binary labels.
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To improve performance, four extensions to the base model are introduced. First, drawing from the
work of Reimers and Gurevych (2019), I use cosine-similarity to compare two sentence embeddings
for the semantic textual similarity task, firmly improving the multitask-BERT performance. Second, I
adjust sentence embeddings during the model’s forward passes by using mean pooling of the last
hidden state rather than using the hidden state of the [CLS] token. Third, I concatenate embeddings
for the specific task of paraphrase detection, using a combination of absolute embedding differences
and the element-wise product of the two embeddings to better capture aspects of similarity between
the two sentences. Fourth, I implement multi-task learning as described by Bi et al. (2022) to update
the BERT embeddings during training, effectively adding together the losses of the three tasks. Taken
together, these extensions present a multitask BERT model that significantly improves upon the
baseline set by the base BERT model.

3 Related Work

Multiple extensions of the base BERT model have worked to enhance BERT’s adaptability and
efficiency for a wide array of NLP tasks. By addressing the limitations of the original model through
various architectural improvements and training strategies, these developments pave the way for
more robust and versatile models capable of generalizing across multiple downstream tasks. Hereby,
popular adaptions include domain-specific BERT versions (e.g. BioBERT for biomedical text (Lee
et al., 2019)) and models with increased capacity or modified architectures (e.g. RoBERTa ((Liu
et al., 2019), XLNet (Yang et al., 2020)). For the three downstream tasks this paper is concerned with,
the extensions primarily fall into a third category, mainly involving techniques for task-specific fine
tuning.

As such, the approach presented in this paper is grounded in existing work that has been done in this
area. While they focused on building siamese and triplet networks for sentence embeddings, Reimers
and Gurevych (2019)’s paper on the SBERT architecture has extensively presented the value of using
cosine similarity for sentence embedding comparison. The same goes for mean pooling, for which the
SBERT paper has been highly influential by demonstrating a practical application of mean pooling
within sentence embedding generation. Concatenating absolute embedding differences as well as
their element-wise product is inspired by InferSent (Conneau et al., 2017) and Universal Sentence
Encoder (Cer et al., 2018), and has also been used in SBERT. Lastly, the modified loss function,
whereby I aggregate losses from multiple tasks during the training process, is drawn from Bi et al.
(2022), who specifically apply multi-task learning to the context of news recommendation systems,
combining the tasks of category classification and named entity recognition (NER) to enhance the
system’s performance.

4 Approach

4.1 Baseline Architecture

My model follows the base BERT architecture as outlined in the original BERT paper by Devlin et al.
(2019). As such, it consists of an embedding layer and 12 encoder layers.

More specifically, BERT first converts sentence input into one of 30,000 different word tokens
through a WordPiece tokenizer, which are then further converted into token ids. These ids are put
in to the embedding layer, which sums token embeddings, segmentation embeddings and position
embeddings to create input embeddings. Within the 12 encoder layers, BERT crucially makes use of
the Transformer architecture (Vaswani et al., 2017), consisting of multi-head attention that allows
the model to weigh the importance of different words relative to each other within a sentence, an
additive and normalization layer with a residual connection, a feed-forward layer and another additive
and normalization layer with a residual connection (Figure 1). This architecture enables the model’s
understanding of the context surrounding each word, using both preceding and following words to
generate embeddings.

BERT then outputs the embedding for each word piece of the sentence from the last encoder layer,
as well as the [CLS] token embedding, which is the token prepended to the token representation of
each input sentence. For our baseline results, I used the [CLS] embedding to predict on the three
downstream tasks.
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Figure 1: Encoder Layer used in BERT (based on (Vaswani et al., 2017)

Using this default BERT implementation, I added task-specific layers for effective multitasking:

For sentiment classification, I am applying a dropout layer to prevent overfitting, setting dropout
probability to 10%. I am then applying a linear layer to transform the embeddings into a vector
consisting of five output values, each corresponding to the score for one of the sentiment classes.
During training, I am then optimizing for minimizing cross-entropy loss.

For both paraphrase detection and similarity classification, I compute the difference between the
two embeddings, apply the dropout layer and then pass the result through a linear layer resulting in
one logit (paraphrase detection is a binary classification task, and similarity classification predicts a
continuous score). Paraphrase detection then minimizes binary cross entropy loss during training.
For similarity prediction, I minimize mean squared error loss.

For the baseline scores, I finetuned the weights training only on the SST dataset, and then evaluated
these weights’ performance on the three datasets. For all the following extensions, I finetuned by
training on all three datasets.

4.2 Cosine Similarity

To improve upon the baseline, the semantic textual similarity prediction was modified to use cosine
similarity for comparing two sentence embeddings. Compared to the baseline approach, this extension
simplifies the prediction process, not using a dropout or linear layer. It takes the two embeddings,
computes their cosine similarity and returns this similarity scaled by a factor of 5 to account for the
range of similarity scores in our dataset. Hereby, cosine similarity is defined as follows:

similarity =
x1 · x2

max(∥x1∥2, ϵ) ·max(∥x2∥2, ϵ)
(1)

where ϵ is set at the default of 1e-8 to avoid division by zero.

4.3 Mean Pooling

While the baseline uses the CLS pooling output, I switched to a mean pooling strategy using the last
encoding layer’s hidden states, i.e. the token embeddings for each input token. Instead of relying on
a special token like [CLS], the mean pooled vector effectively condenses the information from all the
tokens into a single vector by taking the average of all token embeddings, ignoring the padding tokens
through a binary attention mask. Together with 4.2, this yields the architecture shown in Figure 2.
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Figure 2: Architecture for STS prediction, adapted from Reimers and Gurevych (2019)

4.4 Multi-Task Learning

I modified the loss function used during training to incorporate the individual losses from each task
in one multitask loss function:

L = Lsentiment + Lparaphrase + Lsimilarity (2)

Where the individual loss functions remain unchanged from the baseline architecture, i.e. cross-
entropy, binary cross-entropy and mean squared error loss, respectively.

4.5 Concatenation Mode

Lastly, I modified the baseline predictor for paraphrase detection by concatenating different rep-
resentations of the two sentence embeddings u and v. First, I computed both the element-wise
difference |u− v| and the element-wise product u ∗ v, which can both be seen as different measures
of similarity—if two sentences are very similar, the absolute difference between them should be
small, and the element-wise product should be large. I then concatenated these two measures and
applied a dropout layer with the previous dropout probability of 10%. Further, I passed it through a
linear layer, transforming it back to the original size, i.e. the size of the hidden layer, applied a ReLu
and then used another linear layer to output a single logit.

5 Experiments

5.1 Data

For sentiment analysis, I am using the Stanford Sentiment Treebank (SST) dataset (Socher et al.,
2013). It consists of 11,855 single sentences extracted from movie reviews. Sentiments are labeled as
one of negative, somewhat negative, neural, somewhat positive, or positive. I am using a train/dev/test
set split with 8,544 train, 1,101 dev and 2,210 test examples.

For paraphrase detection, I am using a subset of the Quora dataset (Quora, 2017), which contains
400,000 question pairs with binary labels indicating whether particular pairs are paraphrases of one
another. Here, my split is 141,506 train, 20,215 dev and 40,431 test examples.

For STS, I am using the SemEval STS benchmark dataset (Agirre et al., 2013), consisting of 8,628
different sentence pairs of varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning).
I am using a split with 6,041 train, 864 dev and 1,726 test examples.

5.2 Evaluation method

For sentiment analysis and paraphrase detection, I will evaluate accuracy as correct predictions
total predictions .

Due to being computed on a continuous scale, semantic textual similarity will be be evaluated on
Pearson correlation of the true similarity values against the predicted similarity values, i.e.∑n

i=1(Xi − X̄)(Yi − Ȳ )√∑n
i=1(Xi − X̄)2

√∑n
i=1(Yi − Ȳ )2

4



where n is the number of samples, Xi and Yi are the individual samples of the true and predicted
similarity scores, and X̄ and Ȳ are the mean values of the true and predicted similarity scores.

For evaluating multitask performance across these three tasks, we average the three scores.

5.3 Experimental details

All experiments but the last one were trained for 10 epochs with fine tuning, a batch size of 8, a
dropout probability of 0.1, and a learning rate of 1e-5, using an NVIDIA T4.

Overall, I conducted experiments with seven different model configurations, in this order:

Baseline Only training on SST dataset, using the baseline architecture.
Multi-Dataset Training Incorporating training data for paraphrase detection and STS (i.e. Quora
and SemEval sets).
Cosine Similarity Adding cosine similarity modification as described in 4.2.
Mean pooling Adding mean pooling as described in 4.3.
Multi-Task Learning Adding multi-task learning as described in 4.4.
Concatentation Mode Adding concatenation as described in 4.5.
More Epochs Running previous best model with 15 epochs instead of 10.

These experiments were done in cumulative fashion, such that, e.g. the Multi-Task Learning configu-
ration also included all the modifications from the experiments before it, i.e. mean pooling, cosine
similarity and multi-dataset training.

5.4 Results

Running the aforementioned experiments led to the following results:

Model Overall dev score SST dev acc Paraphrase dev acc STS dev corr
Baseline 0.494 0.532 0.385 0.13
Multi-Dataset Training 0.564 0.503 0.663 0.055
Cosine Similarity 0.704 0.518 0.799 0.592
Mean Pooling 0.713 0.52 0.784 0.668
Multi-Task Learning 0.73 0.52 0.738 0.86
Concatenation Mode 0.75 0.524 0.793 0.863
More Epochs 0.75 0.524 0.793 0.863

Table 1: Comparing results of different model configurations on the STS, Quora and SST dev sets

Model Overall test score SST test acc Paraphrase test acc STS test corr
Concatenation Mode 0.749 0.532 0.789 0.854

Table 2: Result of the best dev set model on the STS, Quora and SST test sets

The Concatenation Mode configuration—which importantly also includes the other modifications
presented in section 4—achieves the highest overall dev score. This model proves to be very consistent
when applying it to the test set, indicating good generalization from development to testing, and that
my chosen architecture, including the dropout layers, were effective at preventing overfitting.

In general, layering on more modifications was able to consistently increase overall dev scores.
Training on multiple data sources led to a huge uplift in paraphrase scores. Cosine similarity (and
the associated scaling of the logits to fit with our data structure) was very effective at improving
STS scores, confirming the results seen in (Reimers and Gurevych, 2019), namely that using cosine
similarity is a good predictor for semantic textual similarity in the BERT model. Its introduction also
positively affected paraphrase accuracy scores, which I did not expect. Mean pooling further increased
STS scores as expected and as laid out in the SBERT paper. Multi-Task learning, while decreasing
the scores for paraphrase detection, strongly improved STS scores, showcasing the importance of
using a collective loss function when training for multiple tasks. The slight decrease in paraphrase
detection scores was counteracted when making use of concatenations for paraphrase detection as
described in 4.5. This led to the best model configuration amongst all experiments.
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Training duration seems to have little impact on the chosen Concatenation Mode model. The identical
scores when running the model for 15 epochs instead of 10 suggest that, for this configuration,
extending training duration does not yield further improvements, indicating convergence to an
optimal level.

Interestingly, the SST dev accuracy does not vary significantly across models, hovering around 0.52.
This suggests that improvements in the other tasks do not necessarily translate to better sentiment
analysis performance, possibly due to differences in task nature or data characteristics.

6 Analysis

For the three tasks, while the model is generally good at predicting the correct label (or, in the case of
STS, a score that is close to the actual one) there are multiple shortcomings. I’m going to look at
false positives and false negatives for each of the three tasks.

Semantic Analysis

False positive It’s everything you don’t go to the movies for.
Actual score: 0 | Predicted score: 3

The model has difficulties understanding the negation of "it’s everything", most likely viewing this as
a positive sentiment, and not connecting it to the negation through "don’t".

False negative If Steven Soderbergh’s ‘Solaris‘ is a failure it is a glorious failure.
Actual score: 4 | Predicted score: 0

Similarly to the false positive, the model fails when a word or expression that is normally used for a
particular sentiment, e.g. "failure" in this case, is used in the reverse by adding another word, e.g.
"glorious" here.

Paraphrase Detection

False positive
Sentence 1: How do you override a Honeywell thermostat?
Sentence 2: How can I unlock a Honeywell thermostat?
Actual score: 0 | Predicted score: 1

The model will tend to predict something as a paraphrase if the large majority of the words in a
sentence are the same. In cases where one word is different, but this word changes the whole meaning
of the sentence, e.g. "override" vs. "unlock", the model will often incorrectly classify the sentences
as paraphrase.

False negative
Sentence 1: Which is best digital marketing course?
Sentence 2: I am MBA (Marketing) Student. I want to pursue Digital marketing Course. So where
Can I find best course of Digital Marketing? Is there any Institute in Mumbai who are providing the
Digital marketing Course?
Actual score: 1 | Predicted score: 0

The model fails to detect something as a paraphrase if it involves significant rewording and the
sentences are of very different length, with one of the two including context that is not relevant to the
general meaning of the question, e.g. "I am MBA student".

Semantic Textual Similarity

False positive
Sentence 1: To reach John A. Dvorak, who covers Kansas, call (816) 234-7743 or send e-mail to
jdvorak@kctar.com.
Sentence 2: To reach Brad Cooper, Johnson County municipal reporter, call (816) 234-7724 or send
e-mail to bcooper@kcstar.com.
Actual score: 1 | Predicted score: 3.61
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Similar to paraphrase detection, the model will tend to predict something as a paraphrase if the
large majority of the words in a sentence are the same. For cases like the above, where the sentence
structure is similar, but the actual datapoints are not the same (e.g. talking about two totally different
people), the model will predict high similarity even though there is very little.

False negative
Sentence 1: Carney sets high bar to change at BoE
Sentence 2: Carney sets high bar to changes at Bank of England
Actual score: 5 | Predicted score: 2.99

The model fails to recognize abbreviations/acronyms and full names (e.g. "BoE" and "Bank of
England") as referring to the same entity. This shortcoming is even more pertinent in short sentences,
where the abbreviation makes up a relatively high part of the sentence.

7 Conclusion

This paper explored multiple extensions of the minBERT model in order to fit it for three downstream
tasks, being sentiment analysis, paraphrase detection and semantic textual similarity (STS). In
particular, I ran different model configurations implementing (1) the training on multiple datasets,
(2) cosine similarity fine tuning, (3) a mean pooling strategy for embeddings, (4) multi-task learning
during training and (5) a concatenation mode for paraphrase detection. Every extension helped to
further improve on the overall baseline scores, with cosine similarity, multi-dataset training and the
concatenation mode having the strongest effect, in particular on paraphrase detection and STS. My
final model manages to get an overall score of around 0.75 on the test set, and has significantly
improved scores on all three tasks.

Given our quantitative analysis, avenues for future work could include weighing certain parts-of-
speech more strongly for paraphrase detection and similarity scoring (like in our example, transitive
verbs, for instance, can often completely change the meaning of a sentence, more so than auxiliary
verbs, so we might want to weigh the difference in transitive verbs more than a differences in auxiliary
verbs). Further, pretraining the model on an abbreviation dictionary could help to create embeddings
through which, for example, "Bank of England" and "BoE" are treated as the same word.
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