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Abstract

Self-Correction has emerged as a promising method of improving Large Language
Models (LLMs) base reasoning capabilities. However, recent work has shown this
approach to fail for mathematics. In this paper, we delve into the fundamental
capacity of LLMs to perform self-correction, primarily in the field of mathemat-
ics. Our investigation establishes that smaller models exhibit shortcomings in
accurately assessing mathematical arguments, and fine-tuning for self-correction
only improves their self-calibration rather than their ability to discern correctness.
Further, through a manual analysis of correct and incorrect solutions, we find that
models are unable to identify granular calculation mistakes such as carry errors and
missing signs, but are able to correct high-level planning. Our findings suggest self-
correction appears to be an emergent behavior that smaller models fundamentally
lack.

1 Key Information to include

• Mentor: Yuhui Zhang

2 Introduction

Large Language Models (LLMs) have come to dominate natural language processing in the last few
years due to their powerful expressive abilities. In particular, LLMs have demonstrated exceptional
stylistic and prose abilities (OpenAI et al., 2023; Chiang et al., 2023) while also showcasing surprising
abilities of language understanding (Begu et al., 2023; Wei et al., 2022a). Moreover, these models are
increasingly capable of completing reasoning tasks (Wei et al., 2022c; Kojima et al., 2022).

Despite the merits, LLMs are not without shortcomings. They have been observed to occasionally
manifest undesired and inconsistent behaviors, such as producing convincingly inaccurate hallucina-
tions (Zhang et al., 2023; Lin et al., 2022; Wei et al., 2022b) and promoting misleading reasoning
(Golovneva et al., 2023; Wu et al., 2023). A popular method to mitigate these problems is through
human feedback (Bai et al., 2022a). Human quality assessments of model outputs act as a reward
signal to optimize model performance – analogous to the human learning process, which typically
involves learning from mistakes via self-reflection, under the assumption that models exhibit similar
behavior.

Due to the massive compute required to train more powerful models (Sastry et al., 2024) and
time and cost of collecting human feedback, researchers have put significant effort into creating
augmentation techniques that reduce reasoning errors such as Chain-of-Thought (Wei et al., 2022c)
and Self-Consistency (Wang et al., 2022) that do not require scaling to larger and larger models. Self-
correction is one promising approach where an LLM evaluates or fixes its own responses. Madaan
et al. (2023) used self-correction to finetune GPT-3.5 and GPT-4 achieving an impressive average
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20% improvement in their tasks. Noticeably, however, mathematical reasoning failed to improve
through self-correction – a result echoed by Ye et al. (2023).

In this paper, we explore self-correction in the domain of mathematics – often used as a strong
measure of model capability. In particular, our results corroborate the finding that moderate sized
LLMs are poor at spotting errors in mathematical reasoning. Despite delicate finetuning designed
to enhance their ability to give feedback and evaluate reasoning stages, we note no substantial
improvements in their capacity to differentiate correct solutions from incorrect ones. Intrigued by this
phenomenon, we scrutinized the model’s outputs, leading us to discover that LLMs are considerably
more adept at rectifying reasoning errors than they are at correcting algebraic or calculation-related
mistakes. This provides one explanation as to why researchers have found that LLMs fare better in
self-correction within domains other than mathematics.

3 Related Work

The concept of self-correction in Large Language Models has recently gained huge popularity,
especially in the context of scaling models beyond human capabilities. Discussions related to self-
correction focus on exploring if these highly sophisticated models have the capability of determining
the accuracy of their output and refining their responses Bai et al. (2022a); Madaan et al. (2023); Lee
et al. (2023); Bai et al. (2022b). To illustrate, consider a scenario where an LLM is presented with a
complicated mathematical problem. It may solve it initially, but accidentally commit an error in one
of the calculation stages such as a missing sign or something more significant. In an ideal situation,
the model should be capable of pinpointing this potential discrepancy, review the problem, correct
the error, and subsequently generate a more accurate solution.

The current literature on few-shot prompting highlights the notion of LLM self-correction, i.e., a
process by which an LLM adjusts its outputs (See Pan et al. (2023) for an overview of the literature).
Despite the initial promise of these approaches, Huang et al. (2023); Tyen et al. (2023) have observed
that a significant proportion of the performance improvement obtained through these techniques was
attributed to the use of oracle or external feedback. This involved using the ground truth to know
when to prompt the model to change an answer. While this is sometimes a valid approach, such as
coding problems and some computational math questions where it is easy to test for correctness Gou
et al. (2023); Zhou et al. (2023), for most of informal math this is impossible. This is especially
prominent in multiple choice questions, where randomly guessing multiple times with feedback
results in high accuracy.

Interestingly, evidence from Tyen et al. (2023) demonstrates that for various tasks, LLMs are capable
of correcting their reasoning errors when clearly pointed out, but struggle to identify these errors
independently. Additionally, Wang et al. (2023) observed that models can be easily swayed through
biased feedback. Thus, our study primarily emphasizes evaluating models’ capacity for error detection,
as opposed to their correction abilities.

Several iterative approaches resolve some of these issues. Yao et al. (2023); Xie et al. (2023)
both found that adding self-reflection at each reasoning step dramatically improved performance
for reasoning tasks. This suggests that one of the challenges in self-correction, particularly in
mathematical reasoning, is akin to locating a needle in a haystack. Assessing the correctness of an
entire statement in one go proves significantly more difficult than evaluating it in smaller segments.

4 Approach

We begin by evaluating the capabilities of LLaMA-2 with 7B parameters (Touvron et al., 2023). We
perform a systematic evaluation of prompting methods on self-correction ability. In particular, how
often does it rate a solution as correct given it is correct and how often it rates a solution as incorrect
given it actually is is incorrect. Notably, we report similar findings to Huang et al. (2023); Tyen et al.
(2023).

To examine if finetuning the model can enhance its performance, we adopt Low-Rank Adaptation
(LoRA) due to computational constraints. LoRA is a well-known method for efficiently training
large-scale models (Hu et al., 2022a). Rather than finetuning the entire model, the original weight
matrix of the pretrained model remains frozen and only significantly smaller row rank matrices
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Subject Accuracy

Algebra 0.63
Counting and Probability 0.31

Geometry 0.22
Intermediate Algebra 0.23

Number Theory 0.48
Prealgebra 0.65

Precalculus 0.39
GSM8K 0.86

Table 1: Accuracy of the DeepSeekMath-Instruct 7B model using 4-shot prompting. All rows but
GSM8K are different splits of the MATH dataset. The model has an overall average accuracy of 47%,
so we get a fairly even split of correct and incorrect solutions.

undergo updates. This significantly reduces the quantity of trainable parameters, thereby dramatically
decreasing memory consumption and training time. We also experimented with prompt tuning, which
given the model’s high sensitivity to prompts seems like a reasonable experiment. However, we
encountered technical difficulties that we were unable to address within our timeline.

We conclude our study with a qualitative examination of the model’s outputs, primarily scrutinizing
the specific error trends that the model can correct and those it tends to repeat. Considering the
model’s suboptimal performance, we hypothesis that self-correction is likely an emergent behavior.

We used the HuggingFace libraries transformers, peft, and accelerate to simplify finetuning the model
but wrote the dataloader and training loop from scratch. We also used the library vllm to speed up
inference of the models. Everything else we programmed from scratch.

5 Experiments

5.1 Data

GSM8K (Cobbe et al., 2021) is a dataset of high-quality linguistically diverse grade school math
word problems created by human problem writers. The solutions primarily involve performing a
sequence of elementary calculations.

Hendrycks MATH (Hendrycks et al., 2021) is a dataset of 12,500 challenging competition mathe-
matics problem across seven different areas of high school math: algebra, counting and probability,
geometry, intermediate algebra, number theory, prealgebra, and precalculus. The solutions require
multiple correct non-trivial reasoning steps to get right as well as some hard calculations.

Both datasets have simple final answers such as a single number or a multiple-choice option. When
evaluating models on these benchmarks, we instruct them to reason about the problem before
providing their final solution in a boxed format (i.e. \boxed{...}) which is easy to automatically
parse. Post-processing is then employed to account for alternative correct LaTeX representations.
For instance 0.5, 1/2, \frac{1}{2} and \dfrac{1}{2} should all be recognized as equivalent
solutions.

For evaluating how capable our model is at evaluating correctness, due to the poor base performance
of LLaMa-2 7B on MATH and GSM8K, we generated solutions using DeepSeekMath-Instruct 7b
(Shao et al., 2024), a strong model with good mathematical capabilities for a model of this size. See
Table 1 for the distribution of correct and incorrect answers we generated. Even though this is no
longer true self-correction, we believe this modification is satisfactory enough for the purposes of
this analysis.

For finetuning, we employed the SelFee feedback dataset (Ye et al., 2023) – a collection of instruction-
answer pairs enriched with chatGPT (OpenAI, 2022) feedback and iterative revisions. This dataset
includes math and code tasks as well as general instruction and chat data to improve generalization.
We also generated and filtered by hand a dataset of 120 examples of feedback in the format of our
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specific questions (split evening between correct and incorrect answers as well as three different
kinds of feedback described in section 5.3.1).

5.2 Evaluation method

We evaluate our baseline model’s reasoning ability using overall accuracy, extracting the boxed answer
from the generated solution and comparing it against the ground truth. To evaluate self-correction
ability we compare the distributions of feedback against solution correctness. To get a quantitative
result, we then perform a MannWhitney U test (Mann and Whitney, 1947) to compare the distribution
of confidences conditioned on correctness. We repeat this process for the finetuned model.

5.3 Experimental details

5.3.1 Collecting Feedback

We tested three different categories of feedback. For each category due to the sensitivity of LLMs to
the prompt, we tested several different variants. For a full list of tested prompts, see the appendix.
We generally asked the model to explain its reasoning before giving a final rating.

1. Confidence: We asked the model to evaluate it’s confidence the given solution was correct.

2. Mistake: We asked the model to find mistakes in the solutions.

3. Check: We asked the model to double check all of the calculations.

Additionally, we tried several different rating scales

1. Percent: the models rates its confidence in the correctness of the solution on a scale from 0
to 100%

2. Rating: the model rates the accuracy of the solution on a scale from 1-5

3. Correctness: the model outputs “correct” or “incorrect.”

4. Confidence Level: the model outputs its confidence as one of “very confident,” “confident”,
“somewhat confident”, “not very confident”, or “not confident”

We found that there was not a massive difference in performance between the four different scales. It
is important to note that we rescaled each of the rating scales to be between 0 and 100 so it was easier
to compare between the prompts.

For each prompt and dataset pair, we evaluated the models on a random sample of 100 question-
solution pairs.

5.3.2 Finetuning

We ran experiments using LLaMA-2 with 7B parameters (Touvron et al., 2023). We finetuned on the
SelFee dataset with LoRA for 20k steps with the AdamW optimizer (Loshchilov and Hutter, 2017)
using a learning rate of 3e-4 and batch size of 4. For LoRA, we set the hyperparameters to be α = 15,
10% dropout, rank 64, and no bias similar to Hu et al. (2022b).

Due to limited compute availability, we were unable to perform much hyperparameter optimization,
which could be a reason for the lack of improvement on our self-correction task.

5.4 Results

In Figure 1 we see that the LLM exhibits excessive overconfident in the solutions irrespective of the
prompt. On the surface there seems to be a small improvement after finetuning; we see in Figure 2
that the distribution of responses is better balanced indicating a better-calibrated model. However,
when we ran a Mann-Whitney U test (Table 2 and 3), comparing the distributions of confidences, no
statistically significant difference was evident in the responses from both the baseline and finetuned
models – regardless of the correctness of the provided solution.
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Figure 1: Distributions of baseline model’s confidence conditioned on solution correctness. Confi-
dences of correct solutions are given in orange and confidences of incorrect solutions in blue. Listed
here are the best best cherry picked prompts for each category, averaged over each dataset. For the
prompts used and the more finegrained plots, see the appendix.

Figure 2: Distributions of finetuned model’s confidence conditioned on solution correctness. Confi-
dences of correct solutions are given in orange and confidences of incorrect solutions in blue. Listed
here are the best best cherry picked prompts for each category, averaged over each dataset. For the
prompts used and the more finegrained plots, see the appendix.

Prompt
Idea

Alge-
bra

Count.
&
Prob.

GSM8K Geom-
etry

Inter.
Alg.

Num.
Theory

Prealg. Pre-
calc.

Confi-
dence

0.67 0.32 0.82 0.40 0.75 0.32 0.19 0.45

Mistake 0.40 0.13 0.29 0.75 0.74 0.86 0.40 0.31
Check 0.43 0.30 0.30 0.30 0.25 0.56 0.47 0.23

Table 2: p-values for the Mann-Whitney U tests comparing the distributions of confidences for correct
and incorrect solutions on the baseline model. Notice that all of them are well above a reasonable
0.05 significance level.
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Prompt
Idea

Alge-
bra

Count.
&
Prob.

GSM8K Geom-
etry

Inter.
Alg.

Num.
Theory

Prealg. Pre-
calc.

Confi-
dence

0.85 0.43 0.20 0.48 0.66 0.31 0.21 0.37

Mistake 0.24 0.28 0.30 0.72 0.88 0.60 0.37 0.30
Check 0.38 0.11 0.28 0.30 0.29 0.53 0.41 0.25

Table 3: p-values for the Mann-Whitney U tests comparing the distributions of confidences for
correct and incorrect solutions on the finetuned model. The average p-value is about 0.037 lower
after finetuning. Each result is still above a reasonable 0.05 significance level.

While the p-values tend to be a bit lower on average after fine-tuning, this is not substantial evidence
to base a claim on 1.

We conclude that smaller LLMs are not capable of reliable self-correction without external feedback.
Similar to other emergent behaviors, such as Chain-of-Thought (Wei et al., 2022c), it appears that
smaller models do not have the ability to detect subtle errors in reasoning or calculation mistakes.

6 Analysis

In order to investigate the cause of the our model’s failure to catch mistakes in mathematical reasoning,
we examined a random sample of 120 reflections. We split mistakes into two categories: reasoning
and calculation. There are many nuances to mistakes, but for the sake of brevity we decided on
these two. The evaluation is somewhat subjective, but still enlightening nonetheless. Reasoning
mistakes included using incorrect formulas, the wrong high-level approach, copying incorrectly, and
hallucinations. Calculation mistakes included small typos, incorrect algebraic manipulation, sign
errors, and wrong numerical calculations.

In Table 4 we find that the model is much worse at correcting calculation errors than reasoning errors.
In particular, when the ground truth answer was correct, the model is more likely to falsely identify
a calculation mistake (40%) than a reasoning mistake (20%). When the ground truth answer was
incorrect, the model is more likely to catch a reasoning error (65%) than a calculation error (30%).
We had expected asking the model to double check the calculations to improve the models ability to
find calculation errors, but we did not find this in practice.

We also found that the model was incredibly fickle. It would often change its mind when sampling
feedback for the same response. This lends credence to the claim that mathematical reasoning and in
particular the ability to accurately perform calculations is an emergent behavior, but requires more
investigation.

7 Conclusion

In this paper we examined the fundamental ability of small-scale LLMs to engage in self-correction.
It became clear that these models fail to demonstrate accurate judgment in relation to mathematical
arguments, most notably when it comes to verifying calculations. Although fine-tuning focused
on enhancing self-correction capabilities did manage to improve the model’s self-calibration (thus
curbing overconfidence), it fell short of elevating its proficiency in accurately discerning correctness.
While we acknowledge that our research examined only a single model with limited hyperparameter
tuning, and it is feasible that enhanced optimization or alternate models could yield better results, we
claim that self-correction is an emergent behavior, a trait smaller models smaller models fundamentally
lack the capacity to exhibit.

1Even if a few of the p-values appeared significant, there is a high likelihood it would be a result of p-hacking.
This could be mitigated through multiple-hypothesis testing methods, but because we are nowhere close to
rejecting the null hypothesis, this is not an issue.
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Error Type

Ground Truth None Reasoning Calculation

Correct 0.4 0.2 0.4
Incorrect 0.7 0.65 0.35

Table 4: Proportion of error modes during self-correction. For the correct ground truth answers, each
entry corresponds to the proportion of responses where the model made the given error type when
evaluating correctness (this row sums to 1). The model made fewer reasoning errors when evaluating
solutions than calculation errors. For the incorrect ground truth answers, each entry corresponds to
the proportion of the given error type the model successfully corrects. The model had a higher chance
of correcting a reasoning mistake than a calculation one.

One potential avenue for future research could delve deeper into more specific error types that these
models produce to ascertain if they can be mitigated. Additionally, it is worth noting that Yao et al.
(2023); Xie et al. (2023) found that assessing each step of a response individually yielded better
results than evaluating the entire response collectively. It would be interesting to see which types of
errors this approach can prevent. We would also welcome future experiments involving larger models
to determine if our hypothesis on self-correction as an emergent behavior holds true.
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A Appendix (optional)

A.1 Prompts Tested

confidence_prompt = [
"How confident are you this is correct? Explain your reasoning. Give a
1-5 rating, 1 being not confident at all and 5 being very confident. End
your response with 'Rating: ' followed by your rating.",
"Are you sure this is correct? Give your confidence as a percentage
from 0 to 100.\n\nConfidence: ",
"Are you sure this is correct? Explain your reasoning and give your
confidence as a percentage from 0% to 100%.",
"How confident are you that this proof is right? Explain your
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Prompt
Idea

Alge-
bra

Count.
&
Prob.

GSM8K Geom-
etry

Inter.
Alg.

Num.
Theory

Prealg. Pre-
calc.

Rating 0.67 0.32 0.82 0.40 0.75 0.32 0.19 0.45
Percent 0.40 0.13 0.29 0.75 0.74 0.86 0.40 0.31
Percent 0.82 0.95 0.35 0.08 0.96 0.16 0.59 0.67
Confi-
dence
Level

0.56 0.75 0.16 0.17 0.56 0.75 0.73 0.20

Percent 0.43 0.11 0.30 0.30 0.84 0.56 0.47 0.23
Percent 0.59 0.74 0.52 0.17 0.88 0.21 0.89 0.61
Correct-
ness

0.69 0.26 0.93 0.14 0.85 0.53 0.51 0.68

Table 5: p-values for the Mann-Whitney U tests comparing the distributions of confidences for correct
and incorrect solutions on the baseline model. Notice that all of them are well above a reasonable
0.05 significance level.

Figure 3: All finetuned model confidence predictions.
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Figure 4: All base model confidence predictions.

reasoning and say whether you are very confident, confident, somewhat
confident, not very confident, or not confident.",
"Above is a student response to a question. Pretend you are a teacher
grading the response. How confident are you that the student's response
is correct? Explain your reasoning and give your confidence as a
percentage from 0% to 100%.",
"Above is a student response to a question on a test. You are an
expert and nuanced grader who has a great intuition for these things.
How confident are you that the student's response is correct? Explain
your reasoning and give your confidence as a percentage from 0% to
100%.",
"Above is a student response to a question on a test. Are there any
mistakes in the student's response? If so, explain the mistake and say
the student's response is incorrect. If not, say the student's response
is correct.",
"Are there any mistakes in this answer? If so, explain the mistake and
say the student's response is incorrect. If not, say the student's
response is correct.",
"Are you sure this is correct? Explain your reasoning and give your
confidence as a percentage from 0% to 100%.",
"How confident are you that there is a mistake in this answer? Explain
your reasoning and give your confidence as a percentage from 0% to
100%.",

]

fix_mistake_prompt = [
["There is a mistake in this response. Explain the mistake.",
"Craft a response that doesn't make this mistake. Do not apologize for
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the mistake or make any similar comment. Just create a new response
that doesn't make the mistake that can replace the old response."],

["What is wrong with this answer?",
"Now construct a response that fixes this mistake. Do not apologize for
the mistake. Simply answer the question correctly without making any
other comments."]

]

check_prompt = [
["Double check each of the calculations to make sure they are correct.",
"Is there a mistake? Answer Yes or No."],
["We think there might be an error in the calculations about. Can you
double check all of them by hand.", "Is there a mistake? Answer Yes or
No."],
["Go over each of the calculations in the response very carefully. Can
you find any mistakes", "Is there a mistake? Answer Yes or No."]

]
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