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Abstract

Large Language Models (LLMs) are capable of completing problem-solving tasks
requiring different types of reasoning, but rely on token-level autogressive mechanisms
for text generation and are limited in their ability to reason through complex, multi-step
problems. The Tree of Thoughts framework extends Chain of Thought reasoning in
LLMs to integrate a variety of possible options at each stage of reasoning. We introduce
a new framework that extends the Tree of Thoughts approach by applying a separate
value function that can more effectively evaluate reasoning paths and incorporating
exploration from Monte Carlo Tree Search (MCTS). We find that vanilla tree of thoughts
greatly outperforms a chain of thought based approach on the Game of 24, a task
requiring non-trivial search through reasoning paths. However, upon incorporation of a
separate finetuned value function, we find that the chain of thoughts based approach is
actually able to match the solve rates of MCTS and BFS which use the LLM as a value
function, but at a fraction (1/7) of the runtime. Consequently, we find that the efficacy
and efficiency of a Tree of Thoughts reasoning is more contingent on the efficacy of the
method to propose and evaluate paths rather than the search strategy through the paths
themselves.

1 Introduction

‘Reasoning’ is an essential part of human cognition. Different kinds of reasoning are employed to work
through different types of problems, and we can classify reasoning styles in a variety of ways - such
as inductive vs. deductive vs. abductive, ’critical thinking’ or ’intuitive’, etc. Large language models
(LLMs) like GPT (Brown et al., 2020) and PaLM (Chowdhery et al., 2022) are increasingly capable
of completing tasks requiring different types of reasoning, and increased capacity to do so has mostly
been as an emergent property of LLMs. However, until recently LLMs have largely relied on token-level
autoregressive mechanisms for generating text (Yao et al., 2023), and this approach struggles through
tasks that involve complex, multi-step reasoning through a problem Yao et al. (2023). LLMs as assistive
agents in various contexts are becoming ubiquitous, a presence that will only increase and continue to
be relied upon. It is therefore imperative that we find ways to better reasoning in LLMs, especially with
’complex’ problems that require step-by-step thinking and non-trivial planning.

In 2023, Yao et al drew inspiration from research by (Kahneman and Frederick, 2002; Sloman, 1996), to
build a framework for LLM systems to engage in the "System 2" form of reasoning that humans use to
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Figure 1: Different reasoning architectures via prompting, wherein a thought is represented as a circle and
each thought is generated via further prompting. A) shows the default method of obtaining output. B)
shows chain of thought prompting, in which a language model is prompted for a single step of the problem
at a time until it finds a solution. C) shows the self-consistency chain of thought prompting, which takes a
plurality vote in order to determine the output. D) shows the tree of thought (ToT) prompting framework,
in which the model is prompted for several different potential next steps. The promise of each node is
evaluated and scored, and a search algorithm is used to traverse the tree until a solution is found. This
diagram is inspired by work from (Yao et al., 2023).

think through problems: a slow and step-by-step mode of thinking (Yao et al., 2023). On tasks which
involve complex, multi-step reasoning and/or whose steps are not easily specified, the ToT approach
demonstrates notable gains over existing reasoning strategies in language models. In the Game of 24 task,
for example, utilizing GPT-4 with ToT achieved a success rate of 74% compared with the 4% rate achieved
by GPT-4 with chain-of-thought prompting alone (Yao et al., 2023). While this result validates the ToT
framework for complex reasoning in LLMs, an important limitation of this paper is that authors chose to
explore relatively simple search algorithms for traversal of the reasoning tree after evaluating the likelihood
of each node to lead to a solution. Specifically, they chose to explore the tree via either breadth-first
search (BFS) or depth-first search (DFS). Although these are standard exploration algorithms, they don’t
guarantee a consistent, broad coverage of the tree of thoughts, instead either prioritizing a breadth of
different options or pursuing single chains of thought deeply before backtracking. These approaches may
also be relatively slow to find a solution, needing to explore a large number of nodes before finding a
solution. We propose that a more advanced tree traversal algorithm, optimized for a larger degree of
exploration without necessarily visiting as many nodes, may prove to be more performant.

A second important limitation is that in their ToT framework, Yao et al. utilize the LLM as the critic and
evaluator for each thought candidate (to select top candidates for BFS). However, it is unclear if the LLM
is able to reason well about the given task on its own, especially if such an explicit, prompting-based
architecture like the ToT framework is needed to draw out effective reasoning skills. We propose that a
finetuned LLM with specialized experience evaluating the likelihood of single reasoning steps would allow
for more accurately scored trees of thought.

In this project, we look to extend the Tree of Thoughts framework in several ways. First, we incorporate
Monte Carlo Tree Search (MCTS) as a search strategy for reasoning tree navigation, because the algorithm
is well-poised to balance exploration and exploitation in large decision spaces (Kocsis and Szepesvári
(2006)). This fulfils the design needs of our problem, and we call this approach MCToT: Monte Carlo
search on Trees of Thought. Secondly, we come up with, and test, two different approaches to the value
function used by the model: first, we evaluate our baselines and MCToT with an ’oracle’ value function
that references a database of all possible valid steps of the task at hand; secondly, we evaluate our baselines
and MCToT with a value function we finetune specifically on the Game of 24 task. We also evaluate our
models with trees of varying ’branching factors’, or the number branches/reasoning paths at each thought
junction. Overall, we find that on average we obtain the highest validation accuracies with MCTS and a
tree branching factor of 5 and our finetuned value function. Our finetuned value function yields better
results than both the default value function used by Yao et al. as well as the oracle. MCTS performs better
than BFS for higher tree branching factors, while BFS performs marginally better for trees with lower
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branching factors. Overall, we find that the choice of evaluation method for reasoning paths (that is, our
use of the value function) has a significantly greater impact on performance than the search algorithm used
(BFS vs. MCTS).

2 Related Work

The poor reasoning capabilities of popular large language models have been commonly discussed in
literature (Valmeekam et al., 2022). However, approaches to improving them have been extremely varied.
Building off the default method of prompting an LLM for the entire solution at once (Figure 1A), Chain
of Thought (CoT) prompting (Wei et al., 2023) forces the model to produce a single step at a time, more
directly drawing upon its reasoning power (Figure 1B). CoT prompting underpins many reported methods
for increased reasoning power, including domain-specific extensions to CoT prompting, like Program of
Thoughts (Chen et al., 2022). Upon realizing that several chains of thought could be run in parallel and then
combined in plurality (i.e. a majority vote for discretely valued solutions), self-consistent chains of thought
(Wang et al., 2022) were proposed. Yao et al. observed that LLMs may benefit from more structured
planning processes that not only explore diverse alternatives for current choices, but also evaluate the
model’s current status and look ahead for more global decision making, requirements not concurrently
satisfied by any of Fig 1A-C (Yao et al., 2023). They proposed a tree of thoughts (ToT) framework for
general problem solving with language models (Fig 1D). This ToT approach maintains several concurrent
branches of thoughts, in which each thought is a coherent language sequence that serves as an intermediate
step toward solving the original prompted problem. Least-to-most prompting involves directly getting
the LLM to break the prompt into subproblems, solve them, and combine their solutions, but this proved
to be roughly as performant as CoT prompting on a standard mathematical reasoning dataset (GSM8K)
(Zhou et al., 2022). ToT is different from this in that the exact problem solving strategies and mathematical
decomposition are left up to LLM and may change between steps, allowing for increased flexibility.

When deciding how our ToT model should make judgements on the promise of individual branches of
thought, we looked to Zhu et al’s CoRe, a zero-shot system that uses an LLM to generate proposals and
several discriminator LLMs with different context lengths (single tokens, sentences, etc.) to decide which
proposals have the most promise (Zhu et al., 2022). Drawing from Kahneman’s work, they argued that
this approach closely models the human brain’s use of both System 1 and System 2 reasoning structures,
particularly because they prompted LLMs for detailed reasonings along with the proposals themselves
(Kahneman and Frederick, 2002). The idea to use multiple LLMs for different parts of the reasoning
pipeline was extended by other works, finding improvement in reasoning by directly simulating planning
frameworks with Monte Carlo tree searching to decide on potential actions. In particular, Hao et al
proposed RAP, which uses LLMs as both world models and reasoning agents to generate a larger context
about the task at hand and deliberately plan problem solving strategies via MCTS (Hao et al., 2023). Like
CoRE, the state is communicated as the LLM gives a detailed explanation for its current global context.
Similar planning approaches have found success in other tasks that heavily depend on reasoning, like code
generation. In particular, Planning-Guiding Transformer Decoding was a method to allow transformers
to use planners to better propose candidate programs and test them on provided test cases (Zhang et al.,
2023). These methods demand significantly more resources and time than ToT approaches to not only
run each LLM in parallel, but also train each of the planning framework components. However, MCTS
was consistently reported as a highly performant tree exploration strategy that balances exploration and
exploitation when deciding between potential steps, showing its promise in application to exploring a tree
of thoughts.

An additional layer to proposing solutions to reasoning tasks is refinement: instead of settling for a
single output to represent each branch of thought, Madaan et al. proposed Self-Refine, a method to
iteratively improve an output based on self-feedback (Madaan et al., 2023). REFINER builds off of
this idea, using self-refinement to improve intermediate representations of math problems (like trying
to infer a formula from an initial question) (Paul et al., 2023). Consistent to several of this planning
framework and self-refinement methods is using MCTS or another search algorithm to decide on potential
branches of thought to explore (or, equivalently, potential actions to take). However, Chen et al’s study
on discerning when tree searching was actually useful for task planning revealed that high, underlying
efficiencies of discriminators were prerequisites for MCTS-like methods to work well (Chen et al., 2024).
A fundamental aspect of discriminator reasoning architectures is the method through which LLMs attribute
value to proposed thoughts. Liu et al noticed that by using an explicit value function, specialized in judging
potential branches of thought, in combination with MCTS, generation performance can be significantly
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improved (Liu et al., 2023). Therefore, training a value function that is specialized in making decisions
related to reasoning tasks has been reported to have especially high merit.

3 Approach

In this project, we create a new framework for LLM inference that extends the original Tree of Thoughts
framework by Yao et al. (2023) (and by derivation, the well-documented Chain of Thoughts (CoT)
framework by Wei et al. (2023)). To summarize, these approaches involve maintaining several, independent
branches of thought, in which the model is explicitly instructed to perform staged reasoning through an
’input’ problem prompt. At each stage of reasoning, the model samples from multiple possible reasoning
paths or ’thoughts’, which form the branches of the tree. Each thought is a coherent language sequence
that serves as an intermediate step toward solving the original prompted problem. A graphical illustration
of the ToT framework and how it compares to previous reasoning strategies like CoT is shown in Fig 1.

In our approach, we utilize the ToT reasoning paradigm from Yao et al. (2023) but with the Monte Carlo
Tree Search (MCTS) algorithm to search through the space of reasoning paths in reaching a solution to
the input problem. Originally proposed by Kocsis and Szepesvári (2006), MCTS is a heuristic search
algorithm commonly used in decision-making and optimization problems, and is notable for its ability to
effectively balance exploration and exploitation in large decision spaces. The algorithm works as follows.
First, a selection process is taken, which follows a branch of the tree until a final solution is obtained. Then,
in expansion, unless a solution was obtained on the first DFS exploration, the algorithm backtracks to the
second to last step. In simulation, another child of this step is explored. In backpropagation, information
about whether or not the visited nodes thus far lead to solutions is distributed throughout other nodes in the
tree, and the likelihood of finding a solution given information on other incomplete branches is updated. A
flaw of this approach is that it may greedily not explore a branch of thought deemed to be unlikely to lead
to a solution (even if it actually does) if a vast majority of other moves have not yet been explored. In our
approach, we use the Upper Confidence Bounds applied for Trees (UCT) policy from the original Kocsis
and Szepesvari work, which guides the selection of nodes to explore in MCTS away from this purely
greedy strategy. The use of MCTS in the context of ToT reasoning is a novel exploration. We implement
the ToT framework and MCTS from scratch, but with ideological inspiration from Yao et al. (2023) and
Kocsis and Szepesvári (2006).

We also selected and implemented several baselines against which to measure our model performance.
First, the ’vanilla’ baseline in which we test a default LLM with Chain of Thought prompting. Our second
and third baselines involve the same LLM, but with a Tree of Thoughts framework using the Breadth
First Search (BFS) and greedy exploration algorithms respectively. These are the same baselines used to
provide context by Yao et al’s state-of-the-art work. Specifically, the ’vanilla’ baseline is used by Yao et al.
(2023), the ToT + greedy baseline is also referenced in the paper, and ToT + BFS is the primary algorithm
implemented by Yao et al. (2023).

In our study, we evaluate each of our baselines and ToT models on the “Game of 24" task as evaluated by
(Yao et al., 2023). The Game of 24 a mathematical reasoning challenge in which 4 non-negative integers,
each less than 14, are provided as input. The player must find a way to combine the 4 numbers with
arithmetic operations (+, −, /, ∗, and parentheses) to form 24. As a simple example, one may take the
input 1, 1, 3, 8 and form 1 ∗ 1 ∗ 3 ∗ 8, but as a more complicated example, one may take 2, 3, 5, 12 and find
12/(3− 5/2). The Game of 24 was chosen for evaluation of model reasoning in both the work by Yao et
al. as well as this paper as it is a complex, multi-step task that requires non-trivial search and planning. To
fit this problem into the ToT framework, the model is prompted to provide a single step of the process at a
time. For instance, in the simple example, the first output may be “1 ∗ 1 = 1. numbers left: (1, 3, 8)". In
each output, two of the numbers are combined and one fewer number is left. A model has correctly found
a solution if the final number left is 24 and if all of the intermediary steps are mathematically valid. An
intermediate step is defined as the numbers left at the end of each operation.

4 Experiments

4.1 Data

Our dataset for the Game of 24 task, which we refer to as the ’24nums’ dataset, was scraped from
4nums.com’s solutions page. We obtained all recorded 1362 problems and each of their viable solutions.
Using these solutions, we parsed all possible intermediary steps used to generate 24. We then stored all
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valid intermediary steps as positive examples of valid paths to 24. For example, if a solution for an input
1, 1, 11, 11 summed 1 + 1 = 2 in its solution, we would store 2, 11, 11 as a valid intermediary step to
24. However, in order to finetune a value function to evaluate potentially intermediate states, we also
needed to produce negative examples. Rather than using randomly generated negative examples that may
not fall into the distribution of possible visited states, we generated a set of hard negative examples by
replacing each correct operation with every possible invalid one and continuing parsing as if it were a valid
solution. Therefore, every negative example is only a single operator off of a positive one, ideally being
close to positive branches in the tree of thought proposals. For example, 1 ∗ 1 = 1 is an operation that
can be taken, but the resulting state 1, 11, 11 is not a valid intermediate step to 24 (there is no means of
producing 24 with those numbers). In this way, we were able to produce a set of 16,229 positive examples
(with repeats) across all problems. After eliminating repeated valid intermediate states (as 138 is a valid
intermediate state from starting problems of 1138 and 1335), we produced a training set of 906 unique
positive examples and 906 negative examples. We also used these positive examples to construct a ground
truth oracle which compares a given intermediate step with the set of all possible valid intermediate steps
to determine if the path is viable or non-viable. In our evaluation of tree-based reasoning, we evaluate
our approaches on the easiest 100 problems in the 24nums dataset (we used the percentage of players on
4nums.com who solved the problem as a proxy for problem difficulty).

4.2 Evaluation method

We evaluate all of our approaches by how many successful runs they had out of the number of sets of four
numbers they were given, the same success rate metric used by Yao et al. (2023).

Success Rate =
# of correct final answers

# of test examples
(1)

A run was considered to be successful if any of the branches taken by the algorithm hit the state of 24.

4.3 Experimental details

4.3.1 Guardrails

For our experiments, we leveraged Mixtral-8x7B (Jiang et al., 2024) from the Together AI API unlike
Tree of Thoughts (Yao et al., 2023) and many other approaches that leveraged the more expensive and
more powerful GPT-4 models (OpenAI et al., 2024). In our initial experimentation, we found that the
Mixtral-8x7B model was unable to solve any of the 10 easiest problems in the dataset using any of the
branches it had taken. Upon further inspection, we found that two issues were resulting in this failure.

1. The model was hallucinating numbers inside of its input. If an input was 1, 1, 11, 11 it may try to
perform the operation 2 + 1 = 3 and return 3, 11, 11 as the next possible state.

2. The model was unable to perform arithmetic, producing invalid outputs that could not be generated
using the arithmetic operations it provided. This is a known limitation especially for less powerful
LLMs. In particular, our model of choice Mixtral-8x7B (Jiang et al., 2024) is able to reach 74.4%
on GSM8K (Cobbe et al., 2021) with 8-shot chain of thought. In contrast, GPT-4 is able to
achieve 92% accuracy on the same dataset with 5 shot chain of thought. Without chain of thought
reasoning, these models are known to perform much worse (Wei et al., 2023). Since it is not
possible to have both efficient and accurate chain of thought proposal of arithmetic operations
while also leveraging tree of thought, our project did not leverage chain of thought prompting for
operation proposal.

In order to resolve the aforementioned hallucination issues, we recrafted some of the prompts used in
the original Tree of Thought paper to be more explicit with the desired task. In particular, rather than
simply giving some examples, we also provided a prompt that said it was to perform arithmetic operations
preceding the in-context examples of arithmetic operation proposals: “Propose basic arithmetic (+ - * /)
on two of the input numbers. Only provide numbers and operations in the desired format as shown.” We
found that this helped improve hallucination to some extent, but we still suffered from a 0 solve rate on the
easiest problems in our dataset.

Upon inspection, we found that the model produced invalid proposals (for its intermediate ’thoughts’)
approximately 19% of the time even after prompt engineering - providing numbers that were not in the
set of input numbers. Consequently, we crafted guardrails on model outputs to ensure that they were
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valid. In particular, for every proposal generated by our model, we verified that the numbers were valid
in that they were within the set of numbers available in the input. If they were not, we would skip those
proposed arithmetic operations and resample. If they were, we would leverage python’s evaluation function
to compute the resulting value of the arithmetic expression (ie. eval("1+2") would return 3 which we
could use to compute the resulting numbers in the following state) and proceed along the reasoning path.
Our guardrails successfully captured the invalid proposals that were found after prompt engineering and
replaced them with resampled, valid proposals.

4.3.2 Fine-tuning the Value Function

For both fine-tuning and evaluating our value function, we used Modal Labs’ server-less compute platform.
The model we finetuned was a pretrained Mistral-7B-Instruct-v0.1 available on Huggingface. To increase
computational efficiency and reduce costs, we leveraged 4 bit quantization to reduce our GPU memory
usage on the original model by around 59%.

Furthermore, rather than finetuning all of the weights, we utilized a low-rank adaptation module (Hu et al.,
2022) with a rank of 64, an alpha of 16, and dropout probability of 0.1. We finetuned our model on an
A10G with a learning rate of 1e-4 for 5 epochs on our dataset of 906 positive examples and 906 negative
examples. Finetuning our model took 0.332 A10G GPU-hours. For our loss function, we leverage the same
loss function used to train the reward model in reinforcement learning from human feedback (Ouyang
et al., 2022). Concretely, our loss function is as follows:

loss(θ) = −E(yw,yl)∼D[log(σ(rθ(yw)− rθ(yl)))]

Here, yw, yl refer to sampled positive and negative example states respectively.

4.3.3 Evaluating Tree Search Approaches

We performed experiments evaluating model performance on the Game of 24 across our three value
functions:

1. Using Mixtral-8x7B to evaluate how promising a path is with discrete values sure, likely and
impossible. [the ’default’ value function]

2. Using our finetuned Mistral-7B to evaluate how promising a path is with continuous floating point
values between 0 and 100.

3. Using an ’oracle’ value function to determine how promising a path is by assigning viable
intermediate steps a value of 100 and inviable intermediate steps a value of 0.

As a reminder note, the ’oracle’ value function references the database of all possible valid steps of the
Game of 24 in informing the reasoning path chosen. When evaluating ToT across the three value functions,
we also experimented with two different tree search algorithms (BFS and MCTS) and with different tree
branching factors (branching factors of 1, 3, and 5 for BFS and branching factors of 3 and 5 for MCTS) to
evaluate the degree to which the search strategy and branching factor will influence the success rate of the
model. We found that due to the hallucination issues referenced in Section 4.3.1, vanilla CoT was not able
to successfully solve any problems. Instead, we can consider that BFS with a tree branching factor of 1
is analogous to Chain of Thought (CoT) with an additional (aforementioned) value function(s) to guide
decoding of arithmetic operations and next steps. For our default value function, tree search runs across
our 100 examples took approximately 1.5 - 3 hours each. Our finetuned value function was in contrast
much more efficient with a runtime of 20-40 minutes each.

4.4 Results

The results of our experiments across different value functions ’default’, ’finetuned’ and ’oracle’, tree search
strategies, and branching factors 1, 3 and 5 are summarized in Table 1. With respect to the relationship
between branching factor and success rate, we found that increasing the branching factor generally resulted
in higher success rates when the search strategy and value function were fixed. The only exception to this
trend is observed for the default value function and MCTS, where increasing branching factor from 3 to 5
results in a small, but highly marginal drop in success rate.
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Value Function Search Strategy Success Rate
Default Mixtral-8x7B BFS-1 18.18%
Default Mixtral-8x7B BFS-3 41.41 %
Default Mixtral-8x7B BFS-5 66.66 %
Default Mixtral-8x7B MCTS-3 48.48 %
Default Mixtral-8x7B MCTS-5 47.47 %
Finetuned Mistral 7-B BFS-1 47.47 %
Finetuned Mistral 7-B BFS-3 54.54 %
Finetuned Mistral 7-B BFS-5 63.63 %
Finetuned Mistral 7-B MCTS-3 50.50 %
Finetuned Mistral 7-B MCTS-5 65.65 %

Oracle BFS-1 32.32 %
Oracle BFS-3 57.57 %
Oracle BFS-5 61.61 %
Oracle MCTS-3 51.51 %
Oracle MCTS-5 59.59 %

Table 1: Approach Success Rate

Value Function Runtime (seconds)
Default Mixtral-8x7B 3.51711
Finetuned Mistral-7B 0.52849

Oracle 0.00002

Table 2: Runtime of Different Value Functions

Our results with respect to the relationship between the value function and model performance are more
nuanced. Specifically, we found that when using Mixtral-8x7B to evaluate its own proposals [that is, the
default value function] the success rate gap between using a tree based search strategy vs a chain based
search strategy (ie. branching factor of 1) was more than 2x.

However, we found that these performance gaps were largely eliminated when we leveraged an oracle
to evaluate viable paths and finetuned a value function ourselves. In particular we found that for BFS-1
and MCTS-5, model performance increases in the order of default->oracle->finetuned value function. For
BFS-3 and MCTS-3, the finetuned value function yields better results than the default, but underperforms
compared to the oracle. For BFS-5, the default value function marginally outperforms the finetuned and
the oracle value functions. These results are mixed overall in trend, but the magnitude of performance
difference is relevant. For example, the magnitude of performance difference in the cases where the
finetuned value function underperforms relative to the oracle is highly marginal and is of at most 3.03%.
Similarly, when the finetuned value function underperforms relative to the default value function in BFS-5
the difference in success rate is also 3.03%. However, the success rate gain when moving from the default
value function to the finetuned value function on BFS-1 was 29.29%.

Interestingly, we found that the choice of search algorithm - that is, between BFS and MCTS - did not
have a significant, generalized impact on the model’s success rate. For example, MCTS-3 and MCTS-5
generally showed better performance than BFS-1 and BFS-3, respectively, but poorer performance than
BFS-5 across value functions. Moreover, we found that the application of exploration in MCTS, especially
with a poor value function, surprisingly resulted in a higher variance in our solve rate and consequently an
occasionally lower solve rate.

Finally, we also found notable results with respect to value function choice and runtime performance.
Specifically, we compared the runtime of the model across the 3 different value functions in evaluating a
single, identical proposal in the Game of 24, with results summarized in Table 2. From this, we found that
our finetuned value function was 7x faster than the default baseline.

5 Analysis

The results in Tables 1 and 2 illustrate several important trends. Firstly, they show that the effect of value
function choice on model success rate is nuanced, with a greater effect on success rate than the choice of
search algorithm (BFS vs. MCTS), but with an effect that is less pronounced with higher branching factors.
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This tells us that the way in which the model chooses to evaluate individual proposals at intermediate steps
of reasoning has a more significant impact on its overall task success than the choice of algorithm to search
the space of reasoning paths. This intuitively makes sense: the model’s success at searching the space of
reasoning paths and ’pruning’ out sub-optimal paths is contingent on its ability to evaluate the individual
paths themselves. The effect of value function choice on success rate is smaller with higher tree branching
factors, and this could be because with more ’options’ generated at each reasoning step, there is a greater
likelihood that at least one is a correct intermediate thought so there is less reliance on evaluating individual
thoughts precisely with a value function, especially with an effective tree exploration strategy. Overall,
however, we do see that the value function plays a bigger role in model performance than search algorithm
choice. The finetuned value function generally has promising gains over the default, and especially in
practical scenarios where an ’oracle’ may not be feasible, it shows effectiveness in augmenting LLM
reasoning.

Finally, to understand the reasons for the model underperforming in general, we looked at specific examples
of intermediate outputs generated by our model on unsuccessful inputs and compared those intermediate
outputs with the desired arithmetic operations. We attributed these ’failures’ to two separate but often
intertwined issues that occur within these methods. Firstly, the model was unable to propose the arithmetic
operation required to get to the next intermediate level. In this case, no amount of increasing branching
factor would improve performance. In the case of 9, 9, 11, 12, the model was unable to consider any of the
valid intermediate outputs, so the value functions in all cases would be useless. This is responsible for the
lower-than-expected success rate of the oracle runs despite having ground-truth, step-by-step solutions.
Secondly, the model was able to propose an arithmetic operation required to move it forward toward
computing 24 but would subsequently eliminate that path due to poor efficacy of the value function. In
this case, increasing the branching factor allowed for more paths within the tree to be considered which
enabled successful routes to be taken with higher probability. This is responsible for the increase in the
performance of the model across increased branching factors.

6 Conclusion

Our results demonstrate that the success of Tree of Thought based reasoning can largely be attributed to
the ability of these models to reason about the paths that they should take rather than the application of tree
search in itself. Contrary to our expectations, we found that MCTS did not significantly outperform BFS
when being used to find solutions in trees of thought, and in fact often had a higher variance in solve rates
due to the exploration incentive. Despite the generally increased solve rates with a higher branching factor,
we note that a significant boost in performance can be achieved by just leveraging a good value function.
We purport that due to the computational cost of finetuning and evaluating a complex model as a value
function, it is sensible to keep the discriminator model responsible for evaluating reasoning paths separate
from the generator model, in line with current paradigms. Our qualitative evaluations demonstrated that
failure cases across all approaches boiled down to the failure of the model to consider viable paths and the
ability of the model to reason about the paths it proposed at all.

A limitation of our study is that we were only able to evaluate model performance on one complex
reasoning task, the Game of 24. Further work might involve experimenting with LLM reasoning on other
tasks, such as crosswords and other tasks that do not involve numbers. Another further exploration of this
work might involve evaluating model performance for LLMs other than Mixtral-8x7B, such as GPT-4.

Overall, our work offers a notable contribution to the literature, as we demonstrate a way to further
augment the ability of LLMs to reason through complex, multi-step problems with a thorough evaluation
of intermediate reasoning ’thoughts’. Our approach to using a finetuned value function on the task
provides generally better performance, but is importantly much more time-efficient than using an LLM to
discretely evaluate the feasibility of its own reasoning paths. More generally, our findings about the relative
importance of value function choice vs. search algorithm choice yield insights about reasoning in LLMs in
general: that how an LLM ’reflects’ on its choices in solving a problem is integral to its reasoning success.
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