
Improving BERT for Downstream Tasks
Stanford CS224N Default Project

Kevin Phan
Department of Computer Science and Biology

Stanford University
kevphan@stanford.edu

Abstract

In the realm of natural language processing, multitask learning stands as a promi-
nent approach to tackle various language understanding tasks concurrently. Our
study delves into the application of the Bidirectional Encoder Representations
from Transformers (BERT) model across three significant tasks: sentiment anal-
ysis, paraphrase detection, and semantic textual similarity. Leveraging BERT’s
contextual word representations, we address the challenges of multitask learning
while highlighting the implications of employing different methodologies for en-
hancing model performance. Through experiments and evaluations, we explore
strategies such as multiple negatives ranking loss, cosine-similarity fine-tuning,
and cumulative loss round-robin training. Our findings shed light on the efficacy
of these approaches, providing insights into their impact on model performance
across diverse tasks.

1 Key Information to include
• Mentor: Yuan Gao
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

BERT, short for Bidirectional Encoder Representations from Transformers, constitutes a transformer-
based model designed to create contextual word representations. It leverages surrounding text
context to decipher ambiguous language in texts (Devlin et al., 2018). By harnessing bidirectional
word representations, BERT has emerged as a fundamental component for large language models,
particularly in various natural language processing tasks. Specifically, we examine sentiment analysis,
paraphrase detection, and semantic textual similarity.

Sentiment analysis involves identifying the polarity within language and categorizing it along a
discrete spectrum from negative (labeled 0) to positive (labeled 5). Paraphrase detection entails
identifying text that rephrases another piece of text. This task is binary classification, where two
sentences are labeled jointly as 0 (not a paraphrase) or 1 (paraphrase). Semantic textual similarity
(STS) aims to gauge the likeness in meaning between two sentences, represented on a continuous
scale from 0 (not similar) to 5 (identical).

Addressing these three tasks within a single model exemplifies multitask learning, which can be
notably challenging due to differences in objectives and formats across tasks. Prior approaches to
multitask models have recognized the complexities inherent in using a single model for multiple
tasks, as each task may necessitate different optimal parameters. Consequently, achieving a balance
between the requirements and preferences of each task can be challenging. As noted by Yu et al.
(2020), it is not uncommon for a multitask model to exhibit lower overall performance compared to
a model tailored to a specific task. Nonetheless, since multitask models employ the same structure

Stanford CS224N Natural Language Processing with Deep Learning

for different problems, they offer promising avenues for efficiently tackling multitask challenges.
Therefore, there is a significant incentive to comprehend the limitations and enhance the performance
of multitask models.

In this paper, we aim to improve minBERT’s performance on multitask classification utilizing various
extensions.

3 Related Work

Multitask Models, which undertake various tasks within a unified framework, face numerous op-
timization challenges due to the distinct optimal parameters required for each task. Consequently,
they often exhibit inferior performance compared to models tailored for specific tasks (Yu et al.,
2020). Currently, multiple methodologies aim to strike a balance between implementing efficient
multitask models and enhancing their performance. To address this challenge, we extended the
framework of our baseline BERT through fine-tuning to enhance its performance (Stickland and
Murray, 2019). Multitask Fine-tuning is a technique that involves fine-tuning a model on multiple
tasks simultaneously, leveraging the shared structure to facilitate more effective learning.

Round Robin Training for Combined Loss: One notable approach involves training different
tasks concurrently and then combining their losses into a final loss for gradient descent, which has
demonstrated superior performance compared to the baseline BERT model itself (Bi et al., 2022).

Cosine Similarity as an Additional Feature: Reimers and Gurevych (2019) conducted a comparative
analysis of sentence embeddings using cosine similarity. Our study proposes calculating the cosine
similarity between sentence pair and utilizing the output as an additional featre in the prediction head
of the STS and paraphrase detection task.

Multiple Negatives Ranking Loss: Henderson et al. (2017) utilized paired sentence embeddings
to compute the multiple negatives ranking (MNR) loss, thereby enhancing the performance of the
BERT model in a task involving smart email replies.

4 Approach

4.1 Baseline BERT and Adam Optimizer Implementation

For BERT, we developed the architecture for multiheaded attention, an add-norm function, an
embedding function, and a forward function.

Figure 1: Implementation of scaled dot product attentions and multi-head attention (Vaswani et al.,
2017)

Similarly, for the Adam optimizer, we implemented the step function in accordance with the Adam
algorithm outlined in the project guidelines.

Subsequently, We proceeded to implement the forward functions of the BERT sentiment classifier
and the multitask BERT classifier, as well as the prediction functions that yield predictions for each

2

of the three targeted tasks: sentiment analysis, paraphrase detection, and semantic textual similarity.
As a result, the architecture of the multitask classifier in which our experiments built on is as follows:

Figure 2: Multitask Classifier

4.2 Combined Loss and Round Robin Batches

For this extension, we implemented a method to cycle through each dataset for every batch, as
opposed to training on one dataset/task at a time for every epoch. This allowed us to calculate the
loss as follows:

JCombined = JSentiment + JParaphrase + JSemantic

for every batch. For every batch, we used this combined loss when calculating the gradient and
updating the model weights accordingly. By cycling through each task and their corresponding
datasets for each batch, we hope to prevent the model from becoming too biased towards a specific
task. For the loss functions the STS task we used MSE, the sentiment classification task used cross
entropy, and the paraphrase detection task used binary cross entropy with logits.

4.3 Multiple Negatives Ranking Loss

Given that the paraphrase detection class comprises sentence pairs labeled with binary values, we
wanted to enhance the model by implementing multiple negatives ranking loss learning for this task.

JParaphrase(x, y, θ) = − 1

K

K∑
i=1

logP≈(yi|xi)

This loss function endeavors to minimize the distance between positive pairs (i.e., paraphrases) while
simultaneously maximizing the distance between negative pairs (i.e., non-paraphrases).

4.4 Cosine-Similarity Fine-Tuning

Cosine-Similarity Fine-Tuning is a method utilized to gauge the resemblance between two word
embeddings, denoted as u and v, through cosine similarity computation:

similarity =
u · v

max(||u||2 · ||v||2, ϵ)
,

where ϵ represents a threshold value. For every sentence pair, we calculated the similarity score
according to the above formula then concatenated the value the word embeddings before inputting into
the prediction linear layers. By doing so, we wanted the model to learn to utilize the cosine similarity
scores when making predictions as well as increasing the expressive power of the embeddings. We
did this for both the STS and paraphrase detection tasks. The modified architecture is as follows:

3

Figure 3: Modified architecture to use cosine similarity to enhance embeddings.

5 Experiments

5.1 Data

For sentiment analysis, we utilize the Stanford Sentiment Treebank (SST) dataset comprising 11,855
individual sentences, each derived from movie reviews (Socher et al., 2013). For paraphrase detection,
we employ the Quora dataset, a subset of 400,000 question pairs annotated to indicate whether they
are paraphrases of each other. Lastly, for the task of determining semantic textual similarity, we
rely on the SemEval STS Benchmark Dataset, which consists of 8,628 pairs of sentences, each pair
assigned a label indicating their similarity on a scale from 0 (maximally dissimilar) to 5 (maximally
similar).

Table 1: Dataset tasks and splits

SST SemEval Quora

Task Sentiment Analysis Semantic Textual Similarity Paraphrase Detection

Total size 11,855 8,628 202,152
Train size 8,544 6,041 141,506
Dev size 1,101 864 20,215
Test size 2,210 1,726 40,431

5.2 Evaluation method

We employ accuracy as our evaluation metric for sentiment analysis and paraphrase detection, given
that these tasks entail classification. In contrast, for semantic textual similarity, we utilize Pearson
Correlation to gauge the efficacy of the predicted similarity against the actual similarity. We will
compare our scores to our baseline models, as well as the GradeScope leaderboard.

5.3 Experimental details

For each experiment, we rand the following hyperparameters:

• Learning Rate = 1e-5 for finetuning, 1e-3 for pretraining
• Batchsize = 8
• Epochs = 0

4

• Dropout = 0.3

Overall, we conducted six experiments as follows on GCP with a P100 GPU:

1. Baseline Pretraining ~5 hrs training

2. Baseline Finetuning ~8 hrs training

3. Multiple Negatives Ranking Loss for Paraphrase Task ~8 hrs training

4. Cos Sim Embeddings ~19 hrs training

5. Cumulative Loss Round Robin ~6 hrs training

6. Cumulative Loss Round Robin + Cos Sim Embeddings ~18 hrs training

5.4 Results

Table 2: Model Performances

Model Sentiment Accuracy Paraphrase Accuracy SemEval Correlation

Baseline Multitask Pretraining 0.488 0.643 0.342
Baseline Multitask Finetuning 0.503 0.681 0.354
Multiple Negatives Ranking Loss 0.515 0.432 0.362
Cosine Similarity Embeddings 0.506 0.731 0.351
Cumulative Loss RR 0.505 0.702 0.365
Cumulative Loss RR + Cos Sim 0.506 0.785 0.376

Figure 4: Experiment performance on Dev Set, for numbering refer to 5.3

Based on the results on the dev set, we decided to submit experiment six to the leaderboard (Cumula-
tive Loss Round Robin with Cosine Similarity Embeddings). Overall, we received a test score of
0.653 and the following metrics, placing 73rd on the leaderboard.

Table 3: Best Model Performance on Test Set

Model Sentiment Accuracy Paraphrase Accuracy SemEval Correlation

Cumulative Loss RR + Cos Sim 0.504 0.790 0.332

5

6 Analysis

6.1 Multiple Negative Ranking Loss

A notable observation was the unexpected ineffectiveness of Multiple Negatives Ranking Loss
(MNRL) in enhancing the paraphrase task results. One potential explanation for this outcome could
be attributed to the necessity of upscaling the calculated MNRL loss values due to their relatively
smaller magnitudes compared to losses from other tasks. Consequently, the model may have allocated
diminished emphasis on optimizing the paraphrase detection component. For future investigations, we
intend to explore scaling the MNRL loss to ascertain its potential impact on enhancing metrics for the
paraphrase task. Intriguingly, sentiment classification accuracy demonstrated superior performance in
this experiment, likely owing to the sentiment classification task’s proportionally greater contribution
to the overall loss.

6.2 Multitask Round Robin for Cumulative Loss

Our hypothesis suggests that the round-robin cumulative loss contributed to the enhancement of
results by mitigating bias during training towards specific tasks. In general, we observed a notable
improvement in evaluation metrics compared to the baseline when employing this cumulative loss
function. Moreover, alongside the improved metrics, we noted faster runtimes. This expedited
processing can be attributed to the computation of the loss once for every batch across all three tasks,
as opposed to three separate computations (once for each task) for every batch. Consequently, fewer
calls to the step function are made during this procedure, thereby reducing computational overhead.

6.3 Cosine Similarity Embeddings

Furthermore, we posit that integrating cosine similarity into the prediction layers contributed to the
enhancement of metrics. Overall, employing this method resulted in a notable improvement in metrics
compared to the baseline multitask fine-tuning performance. However, it is worth mentioning that the
runtime increased, likely due to the heightened complexity of the model. For each batch, computing
cosine similarity twice becomes necessary to input into both the paraphrase and semantic evaluation
tasks. Additionally, the embedding size is increased as the cosine similarity is concatenated to the
embedding. Remarkably, this enhancement predominantly affected the paraphrase metrics rather than
the semantic similarity task. We speculate that introducing additional layers or complexity may be
necessary to further enhance the latter metric.

7 Conclusion

In this study, we investigated the multitask learning capabilities of the BERT model across sentiment
analysis, paraphrase detection, and semantic textual similarity tasks. By implementing various
methodologies such as multiple negatives ranking loss, cosine-similarity fine-tuning, and cumulative
loss round-robin training, we aimed to enhance model performance and explore the dynamics
of multitask learning. Our experiments revealed notable improvements in model performance,
particularly in paraphrase detection but showed limited improvement in the sentiment classification
and semantic evaluation tasks. The incorporation of cosine similarity embeddings and cumulative
loss round-robin training showcased promising results, indicating the potential of these techniques
in advancing multitask learning frameworks. Moving forward, further research into scaling loss
functions and refining training methodologies could offer deeper insights and contribute to the
continual evolution of multitask learning paradigms in natural language processing.

References
Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. MTRec: Multi-task

learning over BERT for news recommendation. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 2663–2669, Dublin, Ireland. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

6

https://doi.org/10.18653/v1/2022.findings-acl.209
https://doi.org/10.18653/v1/2022.findings-acl.209
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

Matthew L. Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,
Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. 2017. Efficient natural language response
suggestion for smart reply. CoRR, abs/1705.00652.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. CoRR, abs/2001.06782.

7

http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2001.06782

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline BERT and Adam Optimizer Implementation
	Combined Loss and Round Robin Batches
	Multiple Negatives Ranking Loss
	Cosine-Similarity Fine-Tuning

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Multiple Negative Ranking Loss
	Multitask Round Robin for Cumulative Loss
	Cosine Similarity Embeddings

	Conclusion

