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Abstract

Our project implements an enhanced Bidirectional Encoder Representations from
Transformers (BERT) language model. We implemented methods to increase
accuracy in these tasks, particularly through multi-task fine-tuning and random
sampling of data loaders. As as result, we achieve above benchmark accuracy on the
three downstream tasks of interest: sentiment analysis, paraphrase detection, and
similarity analysis. Additionally, we have also implemented a framework of linear
layers for tag-free aspect analysis applied in all tasks as well as dynamic weighting
mechanisms which allow the model to prioritize improved performance on the
downstream tasks with the highest loss for a given epoch. With these extensions,
we achieved somewhat improved accuracy from the base BERT model. While
these improvements were not as high as hypothesized, these outcomes elucidate
how model extensions demonstrated successfully in other studies might actually
hinder performance in similar contexts.

1 Introduction

From reviews of products to comments on social media, we as a society interact more and more
through text-based interactions online. These daily interactions happen on a incredibly large scale,
and the text processing used to parse this data is beginning to have a large impact on how companies,
managers, and designers engineer products for consumption. Over the last few years, innovations in
the natural language processing (NLP) field—particularly transformer-based models which produce
dynamic, context-dependent representations of very large datasets—have enabled language models to
accomplish sophisticated analytical tasks. In the context of this study, we will be focusing on three
downstream tasks: (1) sentiment analysis, which classifies text into 5 different sentiment classes
ranging from negative to positive (2) paraphrase detection, which identifies whether two distinct text
segments convey the same meaning (3) similarity analysis, which identifies whether two distinct text
segments are more similar to each other than not. Successful accomplishment of these tasks bears
significant economic motivation, given their applications to review aggregation software.

In order to do so, we utilized the canonical Bidirectional Encoder Representations from Transformers
model, i.e. "BERT". According to Devlin et al. (2018), the BERT model can be fine-tuned to create
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models for a wide range of tasks without substantial task-specific architecture modifications. While
the baseline BERT model we implemented was able to predict sentiment accurately more than half
the time, its performance on the other two downstream tasks were not able to surpass this threshold.
Thus, we were motivated to find ways to extend the functionality of the baseline BERT model in
order to enhance performance across all three tasks.

The rest of this paper is organized as follows. In Section 2, we review the related work on BERT and
aspect-based sentiment analysis. In Section 3, we outline our approach to implementing both the
baseline BERT model, as well as the extended BERT model with the aforementioned additions. We
then outline our experimental methodology as well as an analysis of our experimental results. Finally,
in Section 5, we discuss future directions for this project.

2 Related Work

A. Bidirectional Encoder Representations from Transformers (BERT)
BERT is based on the transformer architecture, which relies on self-attention mechanisms
to process input text Devlin et al. (2018). Unlike traditional models that process data
sequentially and, as such, generate static word embeddings, BERT processes entire
sequences of data in parallel, which allows it to generate dynamic embeddings to better
capture the context of a word. BERT is pre-trained on a large corpus of text using
unsupervised tasks, and can be fine-tuned on specific NLP tasks.

B. Aspect Based Sentiment Analysis
Aspect Based Sentiment Analysis (ABSA) is a subfield of sentiment analysis which focuses
on identifying the sentiment expressed towards specific aspects within a text. BERT has
previously been combined with the Interactive Attention Networks (IAN) model by Ma et al.
(2017) to further improve the accuracy of the aspect-based sentiment analysis. However,
this original technique heavily relied upon manual tagging of user reviews according to the
predefined aspects, which is an inherently laborious, time-consuming, and biased process.
More recently, a new Multiple-Attention Network (MAN) approach has been shown by
Qiang et al. (2020) to achieve more powerful ABSA without the need for aspect tags. This
technique makes use of a Position-aware Attention submodule which captures the relevance
of contextual words.

C. Relation to BitBiggerBERT
For this study, we will be building on the BERT model as described by Devlin et al. (2018)
with extensions tailored towards both the goal of generalizability across the aforementioned
downstream tasks, as well as task-specific performance. To do so, one of the main extensions
we will implement includes the MAN described by Ma et al. (2017). While we are not
implementing ABSA in full to avoid possibly overfitting on the sentiment analysis task,
we hypothesize that implementing a Position-aware attention layer will be beneficial for
all three downstream tasks. Position-aware attention allows the model to understand the
context of each word in a sentence based on its position. This is crucial for sentiment
analysis, as the sentiment often depends on the order of words. For example, "not good" has
a different sentiment than "good not," even though both contain the same words. In tasks like
paraphrase detection and similarity analysis, understanding the relationship between distant
words in a sentence is essential. Position-aware attention helps the model capture these
long-range dependencies, enabling it to detect subtle differences or similarities between
sentences.

3 Approach

Our approach to this project was broken up into three main phases. First, we implemented the
canonical BERT model as described in Devlin et al. (2018) and fine-tuned on all three datasets for the
three downstream tasks of sentiment analysis, paraphrase detection, and similarity analysis. Second,
we implemented extensions to our fine tuning process to improve on our three downstream tasks
of sentiment analysis, paraphrase detection, and semantic similarity analysis. Third, we updated
the framework for model predictions using Multiple-Attention Network as described by Qiang et al.
(2020).
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Figure 1: Pre-training and fine-tuning approaches to BERT (from Chi Sun and Huang (2019)). In our
current implementation, we follow the red dashed line.

3.1 Baseline BERT Model

As noted in Section 2, BERT is a transformer-based model that creates word representations based
around the context of a phrase, which ultimately aids in natural language understanding of ambiguous
texts. By implementing the basic BERT model as well as using pre-trained weights for sentiment
analysis on the included SST and CFIMDB datasets, we now have a functioning BERT model
from which we can expand to achieve enhanced performance. Within BERT, the embedding layer,
consisting of a word and position, are embedded along with encoder layers that are, in our case,
implemented as a stack of transformer layers. The BERT embedding layers were implemented
in the class BertModel where we cast input token IDs to word embeddings. The BERT layers
themselves include multi-head attention implemented in the BertSelfAttention class and feed
forward function implemented in the BertLayer class. Attention is defined in eq. 2 in the appendix.

3.2 Extension 1: Additional Finetuning

The extension tasks to our base BERT model were implimented in the MultitaskBERT class, where
fine-tuning is performed on specific tasks. In our first implementation, the baselined followed the
black training flow, as outlined in Fig. 1, which involved using the pre-trained bert model and
fine-tuning on the sst (sentiment analysis) dataset. To improve performance, we decided to fine-tune
the model on all three datasets during each training batch. By utilizing the class CombinedLoader1

from Lightning AI, we are able to take random samples from all three datasets associated with the
three downstream tasks, and trains on each of the samples during each training epoch. The combined
sampler flags the dataset from which each batch was chosen such that we can apply tailored loss
functions for each task.

3.3 Extension 2: Tailored Loss Functions

For our next extension we updated the loss functions when finetuning with samples from the
paraphrase detection and semantic evaluation datasets. For the paraphrase detection task, we used
Binary CrossEntropyLossWithLogits–defined in eq. 1 from PyTorch library (see appendix).
Binary cross-entropy loss is particularly suitable for binary classification problems, such as paraphrase
detection, where each input sample is classified into one of two classes. In the context of paraphrase
detection, the two classes are "is a paraphrase" (often labeled as 1) and "is not a paraphrase" (often
labeled as 0).

For semantic similarity analysis, we used Mean Squared Error Loss (MSELoss) because this task
typically involves predicting a continuous similarity score between two sentences. The ground
truth labels in the SemEval dataset are continuous values (e.g., between 0 and 5), and MSELoss is
well-suited for regression tasks involving predicting continuous outcomes.

1https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.utilities.
combined_loader.html
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3.4 Extension 3: Dynamic Weighting, Gradient Surgery

We noticed that our model was getting over-optimized on the paraphrase task, since the dataset on
which it trained contained the most data. As such, we decided to implement dynamic weighting so
that no single task would dominate the training process. Dynamic weighting was implemented at the
end of each epoch according to eqs. 5 and 6. By dynamically adjusting the weights of each dataset
during training, the model is encouraged to learn features that are generalized across all datasets,
rather than overfitting to the specifics of the larger dataset. This can lead to improved performance on
unseen data and a more robust model overall.

We also attempted gradient surgery to overcome our model’s over-optimization on the paraphrase
task, due to its common application in the training of deep learning models with multiple tasks or
objectives (Yu et al., 2020), via directly manipulating the gradients during the training process. After
trying both methods, we ended up moving forward with dynamic weighting since it led to higher dev
accuracies.

3.5 Multiple-Attention Network (MAN)

Due to the complexity of the tasks, we decided to add a framework of linear layers as described in
Qiang et al. (2020). This is incorporated after we get output hidden layers from the BERT model, and
therefore is utilized to produce a more nuanced token that is used to produced predictions for each
task. This process includes three main steps: (1) self-attention, (2) position-aware attention, and (3)
regularization and concatenation.

As seen in eq. 7, we calculate self-attention using the outputted hidden layers from BERT and its
transform. This is very similar to who self-attention is calculated within the BERT model itself.
However, this term is calculated for the choice of four aspects. Therefore, weighted outputs are
calculated in this manner for each aspect, with weights that are updated through a linear layer.

The outputs from the self attention calculation are then multiplied by a second position-aware
weighting factor (again, for each aspect). This can be seen in equation 8. Here, instead of self-
referencing the BERT model output, it takes in a average of the word, position, and token embedding.
This has been shown in both Qiang et al. (2020) and R. He and Dahlmeier (2017) to incorporate the
global context of the sentence. This second weighting factor is then applied to the output of step (1).

Regularization terms are calculated as seen in eq. 9 and incorporated into task loss to encourage
orthogonality between attention weights on different aspects. The results of each aspect are then
concatenated to get the overall analysis of the sentence, which is then used later on in the training
process to produce predictions.

4 Experiments

4.1 Data

We are using the Stanford Sentiment Treebank (SST) dataset for sentiment analysis, the Quora dataset
for paraphrase detection, and the SemEval dataset for semantic textual analysis. The SST dataset
consists of 11, 855 single sentences extracted from movie reviews. The dataset was parsed with the
Stanford parser and includes a total of 215, 154 unique phrases, annotated by 3 human judges. Each
phrase has a label of negative, somewhat negative, neutral, somewhat positive, or positive. The Quora
dataset consists of 400, 000 question pairs with labels indicating whether particular instances are
paraphrases of one another. We use a subset of the dataset with 202, 152 question pairs. The SemEval
dataset contains 8631 sentence pairs that are rated on a continuous scale from 0-5 on how similar they
are. Here 5 means both sentences have an equivalent meaning, whereas 0 means they are unrelated.

4.2 Evaluation method

For sentiment analysis we used accuracy, as defined in eq. 3 (see appendix), to evaluate the model.
This is convenient as both Devlin et al. (2018) and Ma et al. (2017) used the above-defined accuracy
as their metric for sentiment analysis. For paraphrase detection we also used accuracy.
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For semantic textual analysis we used the Pearson correlation coefficient (Agirre et al., 2013), seen in
eq. 4 (see appendix), of the true similarity values against the predicted similarity values.

Qualitatively, we also graphed the losses for each of the tasks across batches, for multiple epochs.
We did so in order to observe whether the loss plateaued over the course of an epoch for the tasks to
see whether our model is able to converge.

4.3 Experimental details

In order to obtain a fully trained BERT model, we trained for 10 epochs used a learning rate of 1e-3
for pre-training and 1e-5 for multi-task fine-tuning. We also used default configuration with a hidden
dropout probability of 0.3 and hidden size of 768. These default parameters were constant throughout
testing. We ran experiments on a GCP VM, using the --use_gpu flag for most efficient training. In
addition, we ran fine-tuning with all three datasets, sampling in a round robin fashion with a random
ordering of tasks for each dataset until each was depleted (e.g. the max_size and max_size_cycle
options for the CombinedLoader). All models used the AdamW optimizer. In addition, for MAN,
an aspect size of four and λ = 0.5 (where λ is the coefficient of the regularization terms) were chosen
based on the work from Qiang et al. (2020).

4.4 Results

For the Original Baseline BERT model, we implemented the canonical BERT model with fine-
tuning only on the SST dataset for the sentiment analysis task. For the Milestone BERT model, we
implemented multi-task fine-tuning along with tailored loss functions for each downstream task. For
the sentiment analysis task, we continued to use CrossEntropyLoss; for the paraphrase detection
task, we used CosineEmbeddingLoss; and finally, for the similarity analysis task, we used MSELoss.
As expected after implementing multi-task fine-tuning, we found that the accuracies for all tasks
(except for sentiment analysis, which the model was no longer over-optimizing on) had increased by
a significant margin as seen in 2.

After implementing Milestone BERT, we decided to make a minor change and use
BinaryCrossEntropyLoss instead of CosineEmbeddingLoss for the paraphrase detection task,
which significantly increased our accuracies in both the paraphrase detection task as well as the
similarity analysis task. Having achieved our highest scores to date with this version of the BERT
model, we decided to use this as our Updated Baseline, to which we could compare our accuracies
after adding more sophisticated extensions in the second phase of model development.

As discussed in the approach, our second phase of model development incorporated two main
extensions: dynamic weighting and MAN. These results from these extensions can be found in Figure
3.

Original Baseline Milestone
SST dev accuracy 0.529 0.495

Paraphrase dev accuracy 0.487 0.547
STS dev correlation -0.120 0.430

Overall dev score 0.485 0.586

Figure 2: Dev evaluation accuracies pre- and post- milestone to baseline BERT model. For Sentiment
(SST) and Paraphrase tasks, we were evaluating the accuracy, as described, and for Similarity (STS)
we used Pearson correlation.

5 Analysis

Upon implementing multi-task fine-tuning for the Milestone BERT model, we found experimentally
that our model was becoming "bottlenecked", e.g. becoming over-optimized for the paraphrase
detection task. We suspect that this problem arose because the paraphrase detection task was
dominating the training phase due to the sheer amount of data in the associated Quora dataset. As
such, we sought out methods to adjust the importance of under-performing tasks during training, as
well as adjustments to the overall model architecture to better optimize for more complex downstream
tasks.
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SST Accuracy Paraphrase accuracy STS correlation

Updated Baseline 0.508
0.511

0.788
0.782

0.672
0.645

+Dynamic Weighting 0.493 0.775 0.514

+MAN 0.521
0.519

0.684
0.687

0.715
0.670

+Dynamic Weighting
+MAN 0.470 0.775 0.544

Figure 3: Evaluation metrics for the Updated Baseline model, and the models with extensions (test
metrics in red). For Sentiment (SST) and Paraphrase tasks, we were evaluating the accuracy, as
described, and for Similarity (STS) we used Pearson correlation.

Figure 4: Training loss for sentiment analysis
over 4 epochs running with max_size_cycle,
for +Dynamic Weighting +MAN model.

Figure 5: Training loss for paraphrase analysis
over 4 epochs running with max_size_cycle, for
+Dynamic Weighting +MAN model.

Figure 6: Training loss for similarity classification
over 4 epochs running with max_size_cycle, for
+Dynamic Weighting +MAN model.

In figures 4 and 6, our calculated losses for sentiment analysis and similarity classification are
converging within the first two epochs, then fluctuating around the same convergent value for the last
few epochs. In figure 5, we see that the loss fluctuates around a seemingly pre-converged value for the
paraphrase task. This means that the saved model we use to start each fine tuning process seems to
have optimal weighting when it come to paraphrase detection. In addition, given paraphrase detection
was the simplest of the three tasks, we expect it to quickly converge. Even when experimenting with
different hyper parameters, this same behavior and results were displayed. Given that our evaluation
metrics did not seem to have a significant difference between these more sophisticated extensions
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Figure 7: Here we see the epoch-wise evolution of our evaluation metrics for all three tasks. This is
from the same run as in figures 4-6.

and our new baseline, by analyzing the loss graph alone, it is hard to say whether or not our model is
getting caught in a localized minimum.

We can see from 7 that with both MAN and dynamic weighting implemented, the increase in metric
for worse-performing tasks seems to be at most the same as increases in the best-performing task.
In addition, from our resulting accuracies in Figure 3, it appears that dynamic weighting is causing
our evaluation metrics to behave different than the implementation’s intended purpose, with large
discrepancies between task performances. There are several potential causes. We first explored
applying MAN to only sentiment analysis to see if the regularization terms being added to the loss
was skewing weights. However, this did not improve the time-like behavior of the metrics. As seen
in the loss figures, SST and STS start out at much higher losses and then eventually converge to a
very small loss, whereas paraphrase analysis starts and stays at a relatively small loss. These initial
losses are skewing the average used when calculating weights (eq. 6), and this difference over epochs

Figure 8: Here we see the epoch-wise evolution of our evaluation metrics for all three tasks. These
are from running only MAN on sst and sts.
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would inform the model that tasks with large changes in loss should not receive as much comparative
weight than the task whose loss is relatively constant throughout the training process. This goes
hand-in-hand with the observed behavior of metrics starting to drop after the first one to two epochs.

As seen in the results, it is clear we implemented a functioning multiple-attention network, with novel
demonstration of the use of these networks on multiple downstream tasks (sentiment and similarity
analysis), not just sentiment analysis as implemented in Qiang et al. (2020). As an extension from the
base model, we are able to achieve higher performance for the more complicated downstream tasks
than our updated baseline. The performance of paraphrase detection decreased, which is caused by
the additional loss terms from regularization added to sst and sts tasks, which favored those tasks in
the training. In addition, when comparing figures 7 and 8, we see that despite the metrics not having
any particular weighting scheme, are staying at higher values instead over over-optimizing one task.

6 Conclusion

In this paper, we explore the effects of various extensions on the performance of the canonical BERT
model for three downstream tasks: sentiment analysis, paraphrase detection, and similarity analysis.
In order to accomplish the goal of optimizing a single model for multiple downstream tasks, we
designed our extensions to meet two somewhat orthogonal goals–generalizability across all tasks, as
well as task-specific performance.

We achieved a large increase in accuracy across the three tasks by simply fine-tuning on each of the
datasets during the training phase, as well as utilizing tailored loss functions for each of the tasks.
In terms of key takeaways from the second phase of the project, we demonstrated experimentally
that the implementation of Multi-Attention Networks applied to all three tasks can be utilized to
more effectively predict sentiment and similarity of sentences, leading to a more sophisticated BERT
language model.

In terms of lessons learnt over the course of this study, we found that it can be very challenging to
diagnose poor accuracies, particularly after implementing multiple novel extensions. For the purposes
of obtaining datapoints on model performance, we needed to run our model for 10 epochs using the
max_size option for the CombinedLoader in order to train on all available data, which ended up
taking approximately twelve hours per run. We addressed this debugging challenge by implementing
data visualization methods to observe interim model performance during the training phase. While
this resolves some of the opacity in the model decision making process, it was nonetheless difficult to
elucidate the source and reasoning behind decreased accuracies.

In the future, optimizing the model’s computational efficiency and scalability, as well as increasing
visibility into the model’s decision-making processes through visualization of attention weights
are potential considerations. Both of these extensions will help address the fundamental difficulty
with the debugging process, and thus allow for further improvement of our extended BERT model
for the intended downstream tasks. In addition, it would be informative to experiment more with
MAN-related hyperparameters and small tweaks in the implementation that could increase specific
tasks’ performance without having a inverse effect on others’.

7 Teammate Contributions & Late Days

• Khanh Tran
Khanh wrote the majority of the content on the final report. She also implemented
the baseline BERT model, as well as the combined batching and dynamic weighting
functionalities. She also assisted in the debugging process along with idea generation
and literature review for the extended BERT model. Late days are shared between
teammates.

• Thomas Hatcher
Thomas’ most notable contributions were implementing MAN, assisting in other
extensions/improvements as well as producing figures for analysis. In addition, he wrote
and revised significant portions of the write up. Late days are shared between teammates.

• Vladimir Gonzalez Migal
Vladimir worked on the functionality of combined batching as well as updating the model
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parameters. He was also responsible for the implementation of the updated loss functions
and dynamic weighting. He was also responsible for defining and running a majority of
the experiments and writing the section in the writeups. Late days are shared between
teammates. Late Days: Khanh V. Tran shared 1 Late Day with Vladimir Gonzalez Migal
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8 Appendix

8.1 Binary Cross-Entropy Loss

L(y, p̂) = − 1

N

N∑
i=1

[yi · log(p̂i) + (1− yi) · log(1− p̂i)] (1)

where:

• L is the binary cross-entropy loss,

• N is the number of samples in the batch,

• yi is the true label for the ith example, which can be 0 or 1,

• p̂i is the predicted probability for the ith example.

8.2 Attention

Attention calculated with input query, key and value tensors Vaswani et al. (2017):

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2)

Where Q is the query tensor, K is the key tensor and V is the value tensor.
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8.3 Accuracy

Accuracy =
TP + TN

(TP + FP ) + (TN + FN)
(3)

8.4 Pearson Correlation

r =

∑
(xi − x̄)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(4)

Where xi, yi represents the values of the x,y-variables in a sample, x̄ is the mean of the values of the
x-variables and ȳ the mean of the values of the y-variable.

8.5 Dynamic Task Weighting

Ltask
avg =

∑Ntask
i=1 Ltask

i

Ntask
(5)

wtask
new = (1− α) · wtask

old + α ·
Ltask

avg∑
all tasks L

task
avg

(6)

where:

• Ltask
avg is the average loss for a given task.

• Ntask is the number of examples for the given task.
• Ltask

i is the loss for the i-th example of the given task.

• wtask
old and wtask

new are the old and new weights for the given task, respectively.
• α is the weighting factor (e.g., 0.1).
• T is the total number of tasks.

8.6 MAN

αi = Softmax(tanh
(
Qih

T
i + bα

)
) (7)

Here, hi are the hidden layers, and Qi is a linear transform of hi, implemented using a linear layer.
The bias term is a learned parameter. (Qiang et al., 2020)

βi = Softmax(tanh (MhT
i + bβ)) (8)

This new term M is a linear transform of the average over embeddings h̄. (Qiang et al., 2020)

Rα,β = ||Mα,βM
T
α,β − I|| (9)

Here, Mα = [α1...αk] and Mβ = [β1...βk] with k being the number of aspects. (Qiang et al., 2020)
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