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Abstract

Protein-protein interactions (PPI) are pivotal for various biological functions. Tradi-
tionally, experimental techniques like mass spectrometry and immunoprecipitation,
as well as methodologies like the yeast two-hybrid system, have been employed to
determine PPI. However, computational methods have also emerged as valuable
tools for PPI prediction. While many computational approaches rely solely on
protein sequence and structure data, they often overlook the valuable contextual
information available in textual descriptions of proteins. This paper introduces
the utilization of a pre-trained large language model, PubMedBERT, to generate
embeddings of protein functional descriptions sourced from UniProt. Through fine-
tuning the pre-trained model under various conditions, such as fixing pretrained
weights or fine-tuning them with LoRA, notable differences of 0.4-0.8 standard
deviations between embeddings of interacting and non-interacting proteins are
observed. In contrast, methods like TF-IDF yield insignificant disparities between
the embeddings. An analysis of the results reveals that the fine-tuned model not
only captures keywords but also identifies conceptually similar terms when gener-
ating embeddings, showcasing its ability to grasp the nuanced context of protein
functional descriptions.
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2 Introduction

Determining Protein-Protein Interactions (PPI) has long been a significant research domain, with
numerous experimental and computational methodologies developed for this purpose (Rao et al.
(2014)). Experimental techniques for determining PPI can be resource-intensive and time-consuming.
Computational methods, such as Rosetta (|Lyskov and Gray (2008)), Alphafold (Jumper et al. (2021)),
or ESM (Lin et al. (2023)) for docking simulation or complex prediction, often require considerable
computational time. For instance, Colabfold typically takes about 30 to 45 minutes to predict a
protein complex. Given the computational overhead involved in these methods, it becomes crucial to
limit the number of candidate proteins for analysis. One approach to achieve this is by leveraging the
functional descriptions of proteins to generate embeddings. These embeddings can then be compared

1Please ensure to verify the time required for Colabfold predictions, as it may vary depending on factors like
hardware specifications and the size of the protein complex.
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and filtered to identify likely interacting proteins. Advancements in natural language processing have
made this task feasible through the use of large language models (LLMs) pretrained on extensive
scientific text corpora, such as PubMedBERT. If successful, such text-based models can serve as
effective filters for protein candidates before employing other sequence-based or structure-based
models for PPI prediction, thereby enhancing throughput of computational methods in PPI.

3 Related Work

Generating text embeddings using Large Language Models (LLMs) to represent biological entities
is not a novel concept, as evidenced by prior research such as BioTranslator (Xu et al. (2023)).
BioTranslator introduces a multilingual translation framework capable of converting various bio-
logical modalities into text representations. Its applications range from identifying novel cell types
to predicting protein functions and learning drug-phenotype-gene relationships in an unsupervised
manner. Notably, BioTranslator surpasses traditional text embedding methods like TF-IDF, Doc2Vec,
and ClusDCA in protein functional prediction and stands out as a pioneering approach capable
of predicting relationships between different biological modalities without relying on paired data.
However, while BioTranslator excels in several tasks, its exploration in predicting Protein-Protein
Interactions (PPI) remains absence. This omission might stem from the inherent complexity of PPI
prediction, where proteins with divergent textual descriptions can still interact, necessitating models
to capture interaction-based ontological distances. To the best of our knowledge, this study marks the
first attempt to utilize LLMs for predicting PPIs through text embeddings, presenting an avenue for
further exploration in this area.

4 Approach

A Siamese network architecture is employed, leveraging the PubMedBERT model as an encoder to
derive embeddings from functional description text Gu et al. (2020). Accompanying this architecture
is a Head module, comprising two linear layers, tasked with embedding projections and reducing
the encoder’s output dimensionality from a 768-dimensional vector to 128 dimensions (Figure 1).
Throughout each training iteration, a fixed number of proteins are designated as anchors. For each
anchor, a positive example is selected alongside several negative examples, all of which were used
as input for embeddings generation. These embeddings are then subjected to negative sampling
loss within the Siamese network framework. During training, two strategies are employed: either
pre-trained weights are kept fixed (head fine-tuning), or they undergo fine-tuning with LoRA (Chen
(2021)). As a baseline, TF-IDF is utilized to generate embeddings for each protein text description.
Ultimately, four distinct sets of embeddings for functional texts are acquired: TF-IDF, pretrained
embeddings, Head fine-tuned embeddings, and LoRA fine-tuned embeddings. To assess the efficacy
of each method, cosine similarity calculations are performed between normalized embeddings of a
query protein (the anchor protein) description and other protein candidates descriptions. Then, the
difference in mean embeddings between interacting and non-interacting proteins is computed. The
trained model is anticipated to yield higher cosine similarity scores among interacting proteins and
lower cosine similarity scores among non-interacting proteins compared to the TF-IDF baseline.

Negative Sampling Loss = − log
(
σ(vpp · vpc)

)
−

∑
pj∈Negatives

log
(
σ(−vpj · vpc)

)
(1)
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Figure 1: Simplified model architecture

5 Experiments

5.1 Data

The dataset was sourced from https://www.uniprot.org/, focusing on human proteins with
accompanying textual descriptions. Following filtering, the dataset comprised approximately 17,000
proteins, each accompanied by a textual description and information regarding interacting proteins.
On average, these descriptions spanned around 90 words. Notably, approximately 40% of the proteins
lacked interacting partners, potentially attributed to database curation. Consequently, these proteins
were omitted from the dataset, resulting in a refined set of around 10,000 proteins with descriptions
and at least one interacting partner. To ensure uniformity, any PubMed reference numbers present
within the functional descriptions were removed during preprocessing, and all text was converted to
lowercase.

Example of protein descriptions data

Anchor protein: glycosyltransferase that generates the core 1 o-glycan gal-beta1-3galnac-
alpha1-ser/thr (t antigen), which is a precursor for many extended o-glycans in glycoproteins.
plays a central role in many processes, such as angiogenesis, thrombopoiesis and kidney
homeostasis development

Interacting protein: probable chaperone required for the generation of 1 o-glycan
gal-beta1-3galnac-alpha1-ser/thr (t antigen), which is a precursor for many extended
o-glycans in glycoproteins. probably acts as a specific molecular chaperone assisting the
folding/stability of core 1 beta-3-galactosyltransferase (c1galt1)

Non-interacting protein: forms a water-specific channel that participates in distinct physio-
logical functions such as glomerular filtration, tubular endocytosis and acid-base metabolism

5.2 Evaluation method

To assess the efficacy of the four embedding methods – TF-IDF, pretrained PubMedBERT, Head
fine-tuned, and LoRA fine-tuned – embeddings were generated for all protein descriptions using each
respective approach. Subsequently, pairwise cosine similarity calculations were conducted for all
proteins. To ensure comparability, the similarity values were normalized, ensuring that each anchor
protein exhibited a mean similarity of 0 and a standard deviation of 1 when compared to all other
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proteins. Following normalization, the difference in mean similarity was computed for interacting
proteins and non-interacting proteins associated with each anchor protein

5.3 Experimental details

• Data inputs: 50 anchor proteins were selected for each train, validation, and test set out of
10,000 proteins. The splits were ensured so that there were no overlapping proteins between
sets to avoid information leakage

• Batch size: Batch size of 12 were used

• Number of negative examples: 6 non-interacting proteins were used in negative sampling.

• Number of epochs: Each model was run for 500 epochs. Models were saved every 100
epochs and models with lowest loss values were used for each training strategy

• Learning rate: 0.001

• Optimizer: Adam optimizer was used

• LoRA parameters: peft module of Hugging Face was used with settings

lora alpha=8, lora dropout=0.05, r=6, bias="none", target modules="all-linear"

5.4 Results

Table 1: Loss value for different embeddings
Train Loss Validation Loss Test Loss

Pre-trained 64.14 63.72 63.71
Head fine-tuned 4.96 4.95 4.95
LoRA fine-tined 4.91 4.91 4.91

1

(a) Head-fine-tuning (b) LoRA fine-tuning

Figure 2: Train and Validation Loss of fine tuning models

1Loss for TF-IDF not report since TF-IDF produce different embedding dimensions, not comparable to other
models loss
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Table 2: Similarity Difference for different embeddings
Train Similarity Difference Validation Similarity Difference Test Similarity Difference

TF-IDF -0.120 0.065 -0.013
Pre-trained 0.337 0.434 0.775

Head fine-tuned 0.410 0.600 0.868
LoRA fine-tined 0.432 0.474 0.869

Figure 3: Train data similarity difference

Figure 4: Train data similarity difference

Figure 5: Train data similarity difference
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LoRA fine-tuned model performs best in loss and similarity difference. However, there are large
deviations in metrics between train, validation, and test set which may due the size of data input.
Although LoRA-fine-tuned model performs best, there was not much improvement between fine-
tuning the entire model or just the head module, suggesting that either the pretrained embeddings
already capture the notion of interatcions or the data input was not sufficiently large to see the
difference.

6 Analysis

To delve into the information encapsulated within the embeddings, we closely examined two instances
of interacting protein descriptions. In the first scenario, both descriptions contained the substring
"1 o-glycan gal-beta1-3galnac-alpha1-ser/thr (tantigen), which is a precursor for many extended
o-glycans in glycoproteins." Consequently, it wasn’t surprising to observe a high degree of similarity
between these descriptions. We conducted a text ablation experiment where certain words in either the
anchor or interacting protein were replaced with "()" to discern the pivotal components contributing
to embedding similarity. Interestingly, we found that removing the phrase "1 o-glycan gal-beta1-
3galnac-alpha1-ser/thr" resulted in a substantial drop in similarity (6), indicating its significant
role. Confirming this observation, removing "1 o-glycan gal-beta1-3galnac-alpha1-ser/thr" from
both anchor and interacting protein led to a decrease in similarity from above 0.9 to just above
0.6. Conversely, when a longer substring "which is a precursor for many extended o-glycans in
glycoprotein" was removed from both descriptions, the similarity remained in the 0.9 range. This
illustrates that the Language Learning Model (LLM) pays particular attention to specific keywords
rather than merely comparing similarity based on word frequency, such as the TF-IDF method.

Simple case of high similarity embeddings

Interacting protein
glycosyltransferase that generates the core 1 o-glycan gal-beta1-3galnac-alpha1-ser/thr (t
antigen), which is a precursor for many extended o-glycans in glycoproteins. plays a central
role in many processes, such as angiogenesis, thrombopoiesis and kidney homeostasis
development
Anchor protein
probable chaperone required for the generation of 1 o-glycan gal-beta1-3galnac-alpha1-
ser/thr (t antigen), which is a precursor for many extended o-glycans in glycoproteins.
probably acts as a specific molecular chaperone assisting the folding/stability of core 1
beta-3-galactosyltransferase (c1galt1)
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(a) Anchor Protein Word Ablation Similarity

(b) Interacting Protein Word Ablation Similarity

Figure 6: Word ablation analysis on high similarity proteins - simple case

In another scenario where two descriptions exhibit high similarity without apparent common sub-
strings (7), the ablation analysis revealed intriguing insights. The model demonstrated attention
towards specific words, such as "tata-box" in one protein description and "assembly of pic" in another,
implying the acquisition of certain conceptual relationships between PIC and tata-box. However,
further comprehensive analysis is required to validate this hypothesis.
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Subtle case of high similarity embeddings

Interacting protein
component of the transcription factor sl1/tif-ib complex, which is involved in the assembly of
the pic (preinitiation complex) during rna polymerase i-dependent transcription. the rate of
pic formation probably is primarily dependent on the rate of association of sl1/tif-ib with the
rdna promoter. sl1/tif-ib is involved in stabilization of nucleolar transcription factor 1/ubtf on
rdna. formation of sl1/tif-ib excludes the association of tbp with tfiid subunits. recruits rna
polymerase i to the rrna gene promoter via interaction with rrn3
Anchor protein
the tfiid basal transcription factor complex plays a major role in the initiation of rna poly-
merase ii (pol ii)-dependent transcription (). tfiid recognizes and binds promoters with or
without a tata box via its subunit tbp, a tata-box-binding protein, and promotes assembly of
the pre-initiation complex (pic) (). the tfiid complex consists of tbp and tbp-associated factors
(tafs), including taf1, taf2, taf3, taf4, taf5, taf6, taf7, taf8, taf9, taf10, taf11, taf12 and taf13
(). component of the tata-binding protein-free taf complex (tftc), the pcaf histone acetylase
complex and the staga transcription coactivator-hat complex (, , , , , )
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(a) Anchor Protein Word Ablation Similarity

(b) Interacting Protein Word Ablation Similarity

Figure 7: Word ablation analysis on high similarity proteins - subtle case

7 Conclusion

This paper demonstrates the utility of Language Learning Models (LLMs) in generating text em-
beddings for protein function, facilitating the selection of potential interacting proteins. However, a
notable limitation of this study lies in the relatively small sample size of protein descriptions used
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for model fine-tuning. Nonetheless, there is promising potential for enhancing model performance
through fine-tuning on a larger dataset.
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